(1)由正弦定理化简
=-cosB cosC
,得:2b 3a+2c
=-cosB cosC
,2sinB 3sinA+2sinC
整理得:3sinAcosB+2cosBsinC=-2sinBcosC,
即3sinAcosB=-2sinBcosC-2cosBsinC=-2sin(B+C)=-2sinA,
∵sinA≠0,
∴cosB=-
;2 3
(2)∵cosB=
=
a2+c2?b2
2ac
=-(a+c)2?2ac?5 2ac
,2 3
∴(a+c)2=
ac+5≤2 3
?(2 3
)2+5=a+c 2
(a+c)2+5(当且仅当a=c时取等号),1 6
∴(a+c)2≤6,
∴a+c的最大值为
.
6