Sn=a1+a2+a3+......+an
S2n=a1+a2+a3+......+an+a(n+1)+......+a2n
s2n-Sn=a(n+1)+a(n+2)+......+a2n
=[1/2+1/3+1/4+....+1/(n+1)+1/(n+2)+.....+1/(2n+1)]-[1/2+1/3+1/4+....+1/(n+1)]
=1/(n+2)+.....+1/(2n+1)
设bn=S(2n)-S(n)
则 b(n+1)-b(n)=[1/(n+3)+1/(n+4)+....+1/(2n+1)+1/(2n+2)]+1/(2n+3)-[1/(n+2)+1/(n+3)+.....+1/(2n+1)]
=1/(2n+2)+1/(2n+3)-1/(n+2)
>0
所以 {bn}是递增的
则{bn}的最小值是b1
即 b1>m/16
b1=S(2)-S(1)=(a1+a2)-a1=a2=1/3
即1/3>m/16
即 m<16/3
所以 m的最大值是5
S=S2n-Sn=1/(n+2)+1/(n+3)+1/(n+4)……+1/(2n+1)>=n/(2n+1),,新的S数列是个递减数列,故有下限,对于n/(2n+1),当n→∞时,n/(2n+1)→1/2,故S>1/2,可以算出,m=<8,故能取得的最大整数为8