2;2:
x1-
x2
-
x3
+
x4
=
0
----(6)
2*x3
-
4*x4
=
1
----(7)
以x4,和x2为自由变量,
2*x4+1/,,代入(2)(3)得:
2*x3
-
4*x4
=
1
----(4)
2*x3
-
4*x4
=
1
----(5)
由此可以看出:
(x2+x4
+1/,
x2解:
设
x1-
x2
=
y,原方程组化为:y
=
x3-x4,4元方程组只有两个约束条件,得到:
x3
=2*x4
+1/2;
x1
=
x2+x4
+1/2;
因此,方程组通解为:
y
-
x3
+
x4
=
0
----(1)
y
+
x3
-
3x4
=
1
----(2)
2y
-4x3
+6x4
=-1
----(3)
由(1)得
增广炬阵为:
1
-1
-1
1
0
1
-2
-1
3
-1
1
1
-1
-3
2
用行初等变换变为标准型:
1
0
-1
-1
1
0
1
0
-2
1
0
0
0
0
0
系数矩阵的秩等于增广矩阵的秩,所以有解。通解为:
x1=
1
+
1*
C1
+
1*C2
x2=
1
+
0*
C1
+
2*C2
x3=
0
+
1*
C1
+
0*C2
x4=
0
+
0*
C1
+
1*C2
C1,C2为任意实数。