航天飞机“挑战者”爆炸是什么原因?

2025-01-04 07:14:54
推荐回答(1个)
回答1:

1986年1月28日,美国航天飞机“挑战者”号升空75秒后突然起火爆炸,机毁人亡,造成人类航天史上最悲惨的事故,也是人类探索太空付出的一次重大代价。

“挑战者”号是美国制造的第二架航天飞机,它在结构、材料和设备方面都比第一架航天飞机“哥伦比亚”号有所改进:重量轻了4.5吨,因此可以多装载一些货物;而防热瓦也采用了改进的加固硅瓦片;宇航员的坐椅、着陆系统、仪表盘等也进行了改进。

“挑战者”号航天飞机原定于1983年1月20日首航,由于一些技术故障推迟到4月4日~9日。此次“挑战者”号首航完成了两项主要任务:发射了一颗重2.5吨的跟踪和数据中继卫星;宇航员斯托里·马斯格雷夫和唐纳德·彼德森进行第一次太空行走,他们走出“挑战者”号航天飞机的座舱,处于失重的情况下在敞开的货舱里,系上安全带行走和做各种试验近4个小时。

1983年6月,“挑战者”号航天飞机进行第二次飞行,把美国历史上第一位女宇航员萨利·赖德送上太空;在同年8月的第三次飞行时,美国第一位黑人宇航员布卢福德中校进入太空;1985年4月29日,第一位美籍华裔科学家王赣骏博士参加了“挑战者”号航天飞机的第七次航行,并负责在失重状态下进行一系列流体力学科学研究和太空实验工作。

这次飞行是“挑战者”号航天飞机的第十次航行。

在以前的飞行中,它也曾出现过一些故障,其中1985年7月29日第八次飞行时,发生的事故最为严重。当“挑战者”号航天飞机从佛罗里达州卡那维拉尔角升空不久,3台主发动机中的一台由于热传感器失灵,只开动了5分48秒便突然熄火停机。幸亏宇航员及时启动了机身上的另一台备用发动机,才使航天飞机进入地球轨道,但其离地面的高度比原计划低了100多千米。

“挑战者”号航天飞机爆炸,是世界上第一次航天飞机失事事故。其经过大致是:1986年1月28日,“挑战者”号航天飞机在卡那维拉尔角肯尼迪航天中心升空,在离开地面60秒后,挂在外燃料箱上的一枚助推火箭密封装置出现破裂,并从裂口喷出火焰,直接射向外燃料箱中的液态氢容器,立刻就把容器烧开一个洞,液态氢向外喷射达8秒之久。几秒后,助推火箭松脱外燃料箱,紧接着就是巨大的外燃料箱发生猛烈爆炸,包括宇航员乘坐的密封舱在内的轨道飞行器被炸飞。事后,从当时拍摄的录像带来看,座舱还是完整的,只是受到飞离助推火箭尾部喷出的火焰冲击,以极快的速度坠入大西洋时,才在水面上被击碎,座舱中的7名宇航员全部遇难身亡。

“挑战者”号航天飞机发生空中爆炸,是美国56次载人航天飞行中的第一次,也是美国宇航员第一次殉难空中。这是人类航天史上一次最惨重的灾难,也是损失最大的一次航天事故,其经济损失达14亿美元(其中航天飞机12亿美元,携带的卫星价值2亿美元)。

在7名遇难的宇航员中,最引人注目的是中学女教师克里斯塔·麦考利夫。她来自只有3万人口的康科德小镇,她是一位相当有名的社会学教师,在新罕布尔州康科德中学教授社会学课程。1985年,她从11000名应征教师中脱颖而出,被选中搭乘“挑战者”号航天飞机去太空旅行,并准备从太空向美国多座城市的250万名中学生讲授太空课。

美国前总统里根,在得到前副总统布什关于“挑战者”号航天飞机爆炸事件报告后,立即打电话向7名遇难宇航员的家属转达了全国对他们的慰问,并当场决定参加定于29日在休斯敦太空中心为遇难宇航员举行的追悼会。里根总统还特地向麦考利夫所在的中学发了慰问电,亲切慰问了200名中学生。按照总统的命令,美国各地的建筑物和派驻世界各地的军事哨所纷纷下半旗志哀,洛杉矶奥林匹克体育场的火炬也重新燃起熊熊大火,表示对遇难宇航员的哀悼。

联合国前秘书长佩雷斯·德奎利亚尔和许多国家的领导人,纷纷发表谈话或致电里根总统,对“挑战者”号航天飞机的不幸失事表示深切哀悼。

“挑战者”号航天飞机失事后,美国立即组成了庞大的打捞队伍,飞机和舰船奔赴出事地点。从1月28日到8月28日,先后出动了52架飞机、31艘舰船、1艘核动力潜艇、2艘4人潜艇、5艘无人驾驶潜水器和115名潜水员,总共动用了6000多人对卡那维拉尔角东北64千米的429平方千米的海底进行搜索工作,打捞出11000多千克残骸,其中有宇航员尸体、座舱残骸以及可以证明航天飞机爆炸原因的助推火箭连续环等。

知识点

失重

所谓失重,就是物体对支持物的压力小于自身的重力。所谓重力,是物体所受天体的引力。引力的大小与质量成正比,与距离的平方成反比。在环绕地球运行的轨道上,实际上只有航天器的质心处于零重力,其他部分由于它们的向心力与地球引力不完全相等而获得相对于质心的微加速度,这称为微重力状态。

因此,航天器所处的失重状态严格说是微重力状态。航天器旋转会破坏这种状态。在失重状态下,人体和其他物体受到很小的力就能飘浮起来。长期失重会使人产生失重生理效应。不过利用航天失重条件能进行某些在地面上难以实现或不可能实现的科学研究和材料加工,例如制造超纯度金属和超导合金以及制取特殊生物药品等。