大数据是由消费者的生活,消费习惯,消费能力,爱好,职业、年龄、婚姻、什么时候在做做什么,喜欢去哪里,等,无数的人的信息构成,这些数据对于个人没啥用,但是对企业,对政府就有用了,比如说:你是一家企业,你现在想要开发一款产品,想要通过这款产品盈利,但是问题来了,第一这款产品是不是消费者所喜欢的,第二,哪些消费者能买得起愿意买,第三,你的利润有多少,根据大数据可以分析出,不同消费人群的购买能力,为不同人数开发出其所能消费得起的产品,通过大数据也可以分析出来,这类产品在市场上的接受程度,消费者更喜欢产品有哪些功能,哪些功能最实用,等等,记录下消费者的信息越多,越能深度的分析出用户的需求从而可以根据用户的需求定制产品功能价格等,这些数据就是大数据,在过去要开发一款产品,企业会到市场上做调研,调研所获得的信息就是数据,企业通过这些数据样本,制定产品功能价格等,那这些数据在哪里呢?通常会被互联网公司及各种手机应用收集,只要你使用了他们的网站和手机应用,你在网站和手机应用上产生的消费,分享,评价等等各种行为都会被记录下来,当然你不用担心,这些数据不会对你构成危险,你只是在为大数据添砖添瓦,这个数据也只有大型些互联网公司拥有,自从产生了文字就产生了数据,历史文献所记录的文字信息图片等内容也是数据,数据只是网络用语(因为将文字信息图片等存储到计算机中,这些信息在计算机中就被称为数据),在没有互联网时他也是存在的,并非是互联网时代的产物,“大"就是形容很多,所以当这些信息达到数以万计时就被称为大数据,以上只是个人的理解,希望对你有用,打字很辛苦,请点赞给于支持!谢谢!
可以理解成一个很大的数据包
大数据简单介绍:
容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息; [6]
种类(Variety):数据类型的多样性; [6]
速度(Velocity):指获得数据的速度; [6]
可变性(Variability):妨碍了处理和有效地管理数据的过程。 [6]
真实性(Veracity):数据的质量 [6]
复杂性(Complexity):数据量巨大,来源多渠道 [6]
价值(value):合理运用大数据,以低成本创造高价值
Highcharts大数据可视化图表控件,让大数据更简单网页链接
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质
的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。 物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式 著云台
例子包括网络日志,RFID,传感器网络,社会网络,社会数据(由于数据革命的社会),互联网文本和文件;互联网搜索索引;呼叫详细记录,天文学,大气科学,基因组学,生物地球化学,生物,和其他复杂和/或跨学科的科研,军事侦察,医疗记录;摄影档案馆视频档案;和大规模的电子商务。
大的数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
一些但不是所有的MPP的关系数据库的PB的数据存储和管理的能力。隐含的负载,监控,备份和优化大型数据表的使用在RDBMS的。
斯隆数字巡天收集在其最初的几个星期,比在天文学的历史,早在2000年的整个数据收集更多的数据。自那时以来,它已经积累了140兆兆 字节的信息。这个望远镜的继任者,大天气巡天望远镜,将于2016年在网上和将获得的数据,每5天沃尔玛处理超过100万客户的交易每隔一小时,反过来进口量数据库估计超过2.5 PB的是相当于167次,在美国国会图书馆的书籍 。
FACEBOOK处理400亿张照片,从它的用户群。解码最初的人类基因组花了10年来处理时,现在可以在一个星期内实现。
“大数据”的影响,增加了对信息管理专家的需求,甲骨文,IBM,微软和SAP花了超过15亿美元的在软件智能数据管理和分析的专业公司。这个行业自身价值超过1000亿美元,增长近10%,每年两次,这大概是作为一个整体的软件业务的快速。 大数据已经出现,因为我们生活在一个社会中有更多的东西。有46亿全球移动电话用户有1亿美元和20亿人访问互联网。
基本上,人们比以往任何时候都与数据或信息交互。 1990年至2005年,全球超过1亿人进入中产阶级,这意味着越来越多的人,谁收益的这笔钱将成为反过来导致更多的识字信息的增长。思科公司预计,到2013年,在互联网上流动的交通量将达到每年667艾字节。
最早提出“大数据”时代已经到来的机构是全球知名咨询公司麦肯锡。麦肯锡在研究报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。
“麦肯锡的报告发布后,大数据迅速成为了计算机行业争相传诵的热门概念,也引起了金融界的高度关注。”随着互联网技术的不断发展,数据本身是资产,这一点在业界已经形成共识。“如果说云计算为数据资产提供了保管、访问的场所和渠道,那么如何盘活数据资产,使其为国家治理、企业决策乃至个人生活服务,则是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。”
事实上,全球互联网巨头都已意识到了“大数据”时代,数据的重要意义。包括EMC、惠普(微博)、IBM、微软(微博)在内的全球IT 巨头纷纷通过收购“大数据”相关厂商来实现技术整合,亦可见其对“大数据”的重视。
“大数据”作为一个较新的概念,目前尚未直接以专有名词被我国政府提出来给予政策支持。不过,在12月8日工信部发布的物联网“十二五”规划上,把信息处理技术作为4项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。而另外3项关键技术创新工程,包括信息感知技术、信息传输技术、信息安全技术,也都与“大数据”密切相关。