f(x)=1/(x-m)+1/(x-n) 定义域x∈(-∞,m)∪(m,n)∪(n,+∞)
f(x)=-1/(x-m)²-1/1/(x-n)²<0 f(x)单调递减区间:x∈(-∞,m)∪(m,n)∪(n,+∞)
值域分别为:f(x)∈(-∞,0),f(x)∈R,f(x)∈(0,+∞)
∴f(x)=2>0有两解(第一段无解):
1/(x-m)+1/(x-n)-2=0
[2x-m-n-2x²+2(m+n)x-2mn]/(x-m)(x-n)=0
[x²-(m+n+1)x+mn+½m+½n)]/(x-m)(x-n)=0
x=[(m+n+1)±√[(m+n+1)²-4mn-2m-2n]]/2
=[(m+n+1)±√(1+(n-m)²)]/2
解集:x∈(m,[(m+n+1)-√(1+(n-m)²)]/2)∪([(m+n+1)+√(1+(n-m)²)]/2,n)
∴区间的长度总和=[(m+n+1)+√(1+(n-m)²)]/2-n+(m+n+1)-√(1+(n-m)²)]/2-m
=m+n+1-m-n
=1