(x+1/x)^=x^2+2x*(1/x)+(1/x)^2=x^2+(1/x)^+2
所以x^2+(1/x)^=(x+(1/x))^2-2=5*5-2=23
同理:(x+1/x)^3=x^3+3x^2(1/x)+3x(1/x)^2+(1/x)^3=x^3+(1/x)^3+3(x+1/x)=x^3+(1/x)^3+23*3
所以x^3+(1/x)^3=(x+(1/x))^3-23*3=125-69=56
x+1/x=5 那么:
(x+1/x)^2=5^2=25=x^2+(1/x)^2+2
所以:
x^2+(1/x)^2=25-2=23
x^3+(1/x)^3=(x+1/x)*[x^2+(1/x)^2+1]=5*24=120
x + 1/x = 5
(x + 1/x)^2
= x^2 + 1/x^2 + 2
x^2 + 1/x^2 = 25 - 2 = 23
(x + 1/x)^3
= x^3 + 3*x^2*(1/x) + 3*x*(1/x)^2 + 1/x^3
= (x^3 + 1/x^3) + 3(x + 1/x)
= (x^3 + 1/x^3) + 15
x^3 + 1/x^3 = 125 - 15 = 110
x+1/x=5 (x+1/x)^2=25 x^2+1/x^2+2=25
x^2+1/x^2=23
(x+1/x)(x^2+1/x^2)=X^3+1/x+x+1/x^3=115
x^3+1/x^3+(x+1/x)=115
x+1/x=5
x^3+1/x^3=110