向量的点乘和叉乘计算

向量a=(1,1,1)b=(-1,1,-1)c=(-1,-1,1)求a.(b*c)也就是a点乘(b叉乘c)
2024-12-16 16:24:44
推荐回答(2个)
回答1:

点乘,也叫数量积。结果是一个向量在另一个向量方向上投影的长度,是一个标量。叉乘,也叫向量积。结果是一个和已有两个向量都垂直的向量。
点乘和叉乘的区别点乘是向量的内积,叉乘是向量的外积。点乘:点乘的结果是一个实数a·b=|a|·|b|·cos几何意义:点乘的几何意义;可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。叉乘的几何意义:在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。
叉乘和点乘的运算法则:点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||bcos。

回答2:

a.(b*c)
=(1,1,1).[(-1,1,-1)*(-1,-1,1)]
=(1,1,1).(0,2,2)
=4