设数列{an}前n项和为Sn,已知对于所有的自然数n属于正正数,都有Sn=n(a1+an)⼀2,求证{an}是等差数列数列

2024-12-31 16:28:12
推荐回答(1个)
回答1:

an=Sn-Sn-1
=(na1+nan-na1+a1-nan+an)/2
=(a1+an)/2
得an=a1
即an-1=a1
an-an-1=0
所以此数列是公差为0的等差数列