设各项均为正数的数列{an}的前n项和为Sn满足Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*.(1)求a1的值;(2)

2025-01-24 02:47:36
推荐回答(1个)
回答1:

(1)令n=1得:

S
-(-1)S1-3×2=0,即
S
+S1-6=0

∴(S1+3)(S1-2)=0.
∵S1>0,∴S1=2,即a1=2.
(2)由
S
-(n2+n-3)Sn-3(n2+n)=0
得:
(Sn+3)[Sn-(n2+n)]=0
∵an>0(n∈N*),
∴Sn>0.
Sn=n2+n
∴当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n
又∵a1=2=2×1,
an=2n(n∈N*)
(3)当k∈N*时,∵k(k+
1
2
)=k2+
1
2
k>k2+
1
2
k-
3
16
=(k-
1
4
)(k+
3
4
)

1
ak(ak+1)
=
1
2k(2k+1)
=
1
4
?
1
k(k+
1
2
)
1
4
?
1
(k-
1
4
)(k+
3
4
)

=
1
4
[
1
k-
1
4
-
1
(k+1)-
1
4
]

1
a1(a1+1)
+
1
a2(a