首先取体积微元,在x=a(t-sint)处,x变化量为dx,形成的圆环面积为:
dS=2πxdx,
圆环所在柱面体积:dV=ydS=2πxydx
又dx=d[a(t-sint)]=a(1-cost)dt
将x,y参数方程代入得:
dV=2π[a(t-sint)][a(1-cost)][a(1-cost)dt]=2πa3(t-sint)(1-cost)2dt
∴V=2πa3(t?sint)(1?cost)2dt
作变换u=t-π,则 t=u+π,dt=du,
原积分变为:
V=2πa3[(u+π)?sin(u+π)]?[1?cos(u+π)]2du
=2πa3[π+(u+sinu)](1+cosu)2du
=2π2a3(1+cosu)2du+ (u+sinu)(1+cosu)2du
上式积分的第二部分被积函数 (u+sinu)(1+cosu)2为奇函数,因此在[-π,π]上,积分为0
∴V=2π2a3(1+cosu)2du=2π2a3(1+2cosu+cos2u)du
=4π2a3+4π2a3cosudu+π2a3(1+cos2u)du
=4π2a3?4π2a3sinu+2π2a3?
π2a3sin2u
=6π2a3