数学题来帮帮我呀!O(∩_∩)O谢谢要过程呀!初一(6)

a、b、c都是质数,且满足a+b+c+abc=99,则,| 1/a-1/b |+| 1/b-1/c| +|1/c-1/a|=???
2024-12-19 15:25:15
推荐回答(1个)
回答1:

方法二,如果a、b、c都是奇数,那么abc也为奇数,则a+b+c+abc为偶数,与a+b+c+abc=99矛盾
如果a、b、c都是偶数,那么abc也为偶数,则a+b+c+abc为偶数,与a+b+c+abc=99矛盾
如果a、b、c两奇一偶,那么abc为偶数,a+b+c+abc为偶数,与a+b+c+abc=99矛盾
如果a、b、c一奇两偶,那么abc为偶数,a+b+c+abc为奇数,a+b+c+abc=99有可能
不妨令a=c=2,则2+b+2+4b=99,b=19
| 1/a-1/b |+| 1/b-1/c| +|1/c-1/a|=| 1/2-1/19 |+| 1/19-1/2| +|1/2-1/2|=1/2-1/19+1/2-1/19=1-2/19=17/19.
http://hi.baidu.com/%C9%EE%C9%BD%C0%CF%C1%D6123/blog/item/a0d23f24436c3f0a4d088d81.html