设函数z=f(u),方程u=φ(u)+∫xyp(t)dt确定u是x,y,其中f(u),φ(u)可微;p(t),φ′(u)连

2025-02-01 10:53:44
推荐回答(1个)
回答1:

?z
?x
=f′(u)
?u
?x
?z
?y
=f′(u)
?u
?y

而u=φ(u)+
p(t)dt

两边对x求偏导得:
?u
?x
=φ′(u)
?u
?x
+p(x)

两边对y求偏导得:
?u
?y
=φ′(u)
?u
?y
?p(y)

?u
?x
=
p(x)
1?φ′(u)

?u
?y
=
?p(y)
1?φ′(u)

从而
p(y)
?z
?x
+p(x)
?z
?y
=f′(u)[
p(x)p(y)
1?φ′(u)
+
?p(x)p(y)
1?φ′(u)
]=0