y=sin(x-π⼀3)cosx的周期\最大值\最小值是多少,其实主要是怎样把他化简

2025-01-06 22:45:34
推荐回答(2个)
回答1:

y=sin(x-π/3)cosx
=[sinxcos(π/3)-cosxsin(π/3)]cosx
=[sinx/2-√3cosx/2]cosx
=sinxcosx/2-√3cos²x/2
=sin2x/4-√3/2*(cos2x+1)/2
=sin2x/4-√3cos2x/4-√3/4
=(sin2x/2-√3cos2x/2)/2-√3/4
=1/2*sin(2x-π/3)-√3/4
故最小正周期为π,最大值为(2-√3)/4,最小值为(-2-√3)/4。

回答2:

帮你化简。
y=sin(x-π/3)cosx
=[sinxcos(π/3)-cosxsin(π/3)]cosx
=[sinx/2-√3cosx/2]cosx
=sinxcosx/2-√3cos²x/2
=sin2x/4-√3/2*(cos2x+1)/2
=sin2x/4-√3cos2x/4-√3/4
=(sin2x/2-√3cos2x/2)/2-√3/4
=1/2*sin(2x-π/3)-√3/4
故最小正周期为π,最大值为(2-√3)/4,最小值为(-2-√3)/4。