计量经济学(英文:Econometrics),是以数理经济学和数理统计学为方法论基础,对于经济问题试图对理论上的数量接近和经验(实证)上的数量接近这两者进行综合而产生的经济学分支。
该分支的产生,使得经济学对于经济现象从以往只能定性研究,扩展到同时可以进行定量分析的新阶段。
“计量”的意思是“以统计方法做定量研究”,所以“量”字应读作“[liàng]”,而不读作“[liáng]”。
据说在经济学中,应用数学方法的历史可追溯到三百多年前的英国古典政治经济学的创始人威廉·配第的《政治算术》的问世(1676年)。
计量经济学基础
“计量经济学”一词,是挪威经济学家弗里希(R. Frisch)在1926年仿照“生物计量学”一词提出的。随后1930年成立了国际计量经济学学会,在1933年创办了《计量经济学》杂志。
人们应如何理解“计量经济学”的含义?弗里希在《计量经济学》的创刊词中说到:“用数学方法探讨经济学可以从好几个方面着手,但任何一方面都不能与计量经济学混为一谈。计量经济学与经济统计学决非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分都具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活中的数量关系来说,都是必要的,但各自并非是充分条件。而三者结合起来,就有力量,这种结合便构成了计量经济学。”
后来美国著名计量经济学家克莱因也认为:计量经济学是数学、统计技术和经济分析的综合。也可以说,计量经济学不仅是指对经济现象加以测量,而且表明是根据一定的经济理论进行计量的意思。
计量经济学的基础是一整套建立在数理统计理论上的计量方法,属于计量经济学的“硬件”,计量经济学的主要用途或目的主要有两个方面:
理论检验。这是计量经济学用途最为主要的和可靠的方面。这也是计量经济学本身的一个主要内容。
预测应用。从理论研究和方法的最终目的看,预测(包括政策评价)当然是计量经济学最终任务,必须注意学习和了解,但其预测的可靠性或有效性是我们应十分注意的。
特点
模型类型:采用随机模型。模型导向:以经济理论为导向建立模型。模型结构:变量之间的关系表现为线性或者可以化为线性,属于因果分析模型,解释变量具有同等地位,模型具有明确的形式和参数。数据类型:以时间序列数据或者截面数据为样本,被解释变量为服从正态分布的连续随机变量。估计方法:仅利用样本信息,采用最小二乘法或者最大似然法估计变量。非经典计量经济学一般指20世纪70年代以后发展的计量经济学理论、方法及应用模型,也称现代计量经济学。
发展
国外发展情况。计量经济学首先主要用于微观经济分析,宏观经济理论出现后,在宏观经济方面的应用发展很快,同时,由于计算机的出现和迅速发展,更加促进了计量经济学的发展,特别是20世纪60~80年代初期,可以说是西方经济学中发展最快的一个领域。当然,也存在一些问题。
相较于国际上的大国,计量经济学在我国的开发与应用比较晚。近30年我国才比较广泛应用计量经济学,在我国的发展经历了从我国计划经济体制制度到社会主义市场经济制度过渡的阶段。我国的统计制度也在这段时间经历了从物质平衡表体系到国民经济核算体系的过渡转变。在20世纪90年代初期,恩格尔的ARCH模型作为“现代经济学前沿”被推广到我国,结合我国对经济的重视,对我国计量经济学的发展和未来趋势走向有很大的影响,也对其学科的不断可持续发展提出了新的挑战和机遇。最近几年来,计量经济学在我国逐渐普及以及被重视,关于其的应用以及学科研究文献已经比较广泛和常见。例如,经济时间序列、波普理论、VAR模型、CC模型、LSE模型等计量经济学模型也成为了我国经济研究领域最为广泛的计量经济学建模方法。同时,也有学者开始使用国际先进的DSGE模型,并在我国很多应用研究领域广泛应用,取得了一定的成果。
计量经济学中,R^2是决定系数,表示Y的变动中可以由X的变动来解释的比例,它是回归线对各观测点拟合紧密程度的测度。R^2=1时,表示完全拟合;R^2=0时,表示X与Y不存在线性关系。 R^2的值越高,拟合得越好,但是也要根据具体问题而定。比如,对时间序列数据来说,R^2的值在0.8、0.9以上是很常见的,而在横截面数据的情况下,R^2值为0.4、0.5也不能算低。
计量经济学是以一定的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系的一门经济学学科。主要内容包括理论计量经济学和应用经济计量学。理论经济计量学主要研究如何运用、改造和发展数理统计的方法,使之成为经济关系测定的特殊方法。应用计量经济学是在一定的经济理论的指导下,以反映事实的统计数据为依据,用经济计量方法研究经济数学模型的实用化或探索实证经济规律。
书名
计量经济学
又名
Econometrics
隶属
经济学学科
研究方向
具有随机性特性的经济变量关系
方法
数理经济学和数理统计学
快速
导航
特点
发展
研究对象
学习方法
理论计量经济学和应用计量经济学
趋势
简介
计量经济学(英文:Econometrics),是以数理经济学和数理统计学为方法论基础,对于经济问题试图对理论上的数量接近和经验(实证)上的数量接近这两者进行综合而产生的经济学分支。
该分支的产生,使得经济学对于经济现象从以往只能定性研究,扩展到同时可以进行定量分析的新阶段。
“计量”的意思是“以统计方法做定量研究”,所以“量”字应读作“[liàng]”,而不读作“[liáng]”。
据说在经济学中,应用数学方法的历史可追溯到三百多年前的英国古典政治经济学的创始人威廉·配第的《政治算术》的问世(1676年)。
计量经济学基础
“计量经济学”一词,是挪威经济学家弗里希(R. Frisch)在1926年仿照“生物计量学”一词提出的。随后1930年成立了国际计量经济学学会,在1933年创办了《计量经济学》杂志。
人们应如何理解“计量经济学”的含义?弗里希在《计量经济学》的创刊词中说到:“用数学方法探讨经济学可以从好几个方面着手,但任何一方面都不能与计量经济学混为一谈。计量经济学与经济统计学决非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分都具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活中的数量关系来说,都是必要的,但各自并非是充分条件。而三者结合起来,就有力量,这种结合便构成了计量经济学。”
后来美国著名计量经济学家克莱因也认为:计量经济学是数学、统计技术和经济分析的综合。也可以说,计量经济学不仅是指对经济现象加以测量,而且表明是根据一定的经济理论进行计量的意思。
计量经济学的基础是一整套建立在数理统计理论上的计量方法,属于计量经济学的“硬件”,计量经济学的主要用途或目的主要有两个方面:
理论检验。这是计量经济学用途最为主要的和可靠的方面。这也是计量经济学本身的一个主要内容。
预测应用。从理论研究和方法的最终目的看,预测(包括政策评价)当然是计量经济学最终任务,必须注意学习和了解,但其预测的可靠性或有效性是我们应十分注意的。
特点
模型类型:采用随机模型。模型导向:以经济理论为导向建立模型。模型结构:变量之间的关系表现为线性或者可以化为线性,属于因果分析模型,解释变量具有同等地位,模型具有明确的形式和参数。数据类型:以时间序列数据或者截面数据为样本,被解释变量为服从正态分布的连续随机变量。估计方法:仅利用样本信息,采用最小二乘法或者最大似然法估计变量。非经典计量经济学一般指20世纪70年代以后发展的计量经济学理论、方法及应用模型,也称现代计量经济学