划红线部分是显然的。bj代入方程组适合Abj=0。
又R(A)=3,所以Ax=0的基础解系中只有一个解向量,故任意两个解都是线性相关的。所以R(b1,b2)<=1。
你这个题叙述得不太清楚啊,姑且当作是这样的吧:
f是一个二次型,A是相应的对称矩阵,然后求f在单位球面上的最小值。
那么可以这么做:实际上f(x) = x'Ax,于是利用对称阵可对角化,不妨设A = diag{a, b, c},a>=b>=c。将x按照A的单位正交特征向量为基展开,x = uy1 + vy2 + wy3,则f(x) = au^2 + bv^2 + cw^2 >= c (u^2 + v^2 + w^2) = c,等式成立当且仅当(a - c)u^2 = (b - c)v^2 = 0。整理一下即得所求