(1)证明:∵AC切⊙O于E,∴OE⊥AC,∵∠ACB=90°,∴AC⊥BC,∴OE∥BC,∴∠OED=∠F,∵OD=OE,∴∠ODE=∠OED,∴∠ODE=∠F,∴BD=BF;(2)∵AC是⊙O的切线,∴∠OEA=90°,即∠AED+∠DEO=90°①,∵OE=OD,∴∠EDO=∠DEO,∴∠DOE=180°-2∠DEO,即 1 2 ∠DOE+∠DEO=90°②,由①②得:∠AED- 1 2 ∠DOE=0,则∠DOE=2∠AED.