如图,在△ABC中,∠B=∠C,D是BC的中点,且DE⊥AB,DF⊥AC,E,F为垂足,求证:AD平分∠BAC

2024-12-30 17:31:14
推荐回答(1个)
回答1:

证明:∵D是BC的中点,
∴BD=CD,
又∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
在△BED和△CFD中,
∠BED=∠DFC
∠B=∠C
BD=CD

∴△BED≌△CFD中(AAS),
∴ED=FD.
又∵DE⊥AB,DF⊥AC,
∴AD平分∠BAC.