多项式f(x)除以x^4+x^2+1所得的余式为x^3+2x^2+3x+4,证明f(x)除以x^2+x+1所得的余式为x+3

2024-12-20 15:19:05
推荐回答(2个)
回答1:

多项式f(x)除以x^4+x^2+1所得的余式为x^3+2x^2+3x+4

即存在多项式p(x):
f(x) = (x^4 + x^2 + 1)p(x) + (x^3 + 2x^2 + 3x + 4)
= (x^2 + x + 1)(x^2 - x + 1)p(x) + (x^2 + x + 1)(x + 1) + x + 3
= (x^2 + x + 1)[(x^2 - x + 1)p(x) + x + 1] + x + 3


f(x)除以x^2+x+1所得的余式为x+3

回答2:

x^4+x^2+1 = (x^2+x+1)(x^2-x+1)

f(x) = g(x)( x^4+x^2+1) + x^3+2x^2+3x+4
= g(x) (x^2+x+1)(x^2-x+1)+ x^3+2x^2+3x+4
= g(x) (x^2+x+1)(x^2-x+1)+ x(x^2+x+1) +(x^2+x+1) + x+3