人脸识别主板包含哪几项技术?

2024-12-16 18:52:42
推荐回答(3个)
回答1:

是运用人脸识别支付系统进行支付,支付时面对POS机屏幕上的摄像头,系统会自动将消费者面部信息与个人账户相关联,使人们的生活更加便捷。

回答2:

其实人脸识别主板包括最主要的两个部分,一个是面部活体算法,一个是人脸识别主板。前者为判断人的脸部信息是否为真人的方法,大家都知道,现在生活中经常会出现用面部认证系统来诈骗的事情,所以必须确定这个人的面部信息是否为真人,华科云人脸识别主板就能避免诈骗事件的发生,以保证用户的体验。后者则是支撑系统运转的核心存在,别小看了这块主板,一旦面部识别系统没有了它,是无法进行面部信息采集的。

回答3:

1、人脸检测(Face Detection)

“人脸检测(Face Detection)”的作用就是要检测出图像中人脸所在位置。

人脸检测算法的输入是一张图像,输出是人脸框坐标序列,具体结果是0个人脸框或1个人脸框或多个人脸框。输出的人脸坐标框可以为正方形、矩形等。

人脸检测算法的原理简单来说是一个“扫描”加“判定”的过程。即首先在整个图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸大小以及图像内容相关。在实际算法时,我们可以通过设置“输入图像尺寸”、或“最小脸尺寸限制”、“人脸数量上限”的方式来加速算法。

举例说明:绿色矩形框标注的即为人脸检测算法检测到的人脸位置

2、人脸配准(Face Alignment)

“人脸配准(Face Alignment)”所实现的目的是定位出人脸上五官关键点坐标。

人脸配准算法的输入是“一张人脸图像”和“人脸坐标框”,输出是五官关键点的坐标序列。五官关键点的数量是预先设定好的一个固定数值,常见的有5点、68点、90点等等。

当前效果的较好的一些人脸配准技术基本通过深度学习框架实现。这些方法都是基于人脸检测的坐标框,按某种事先设定规则将人脸区域抠取出来,缩放到固定尺寸,然后进行关键点位置的计算。另外,相对于人脸检测,或者是后面将提到的人脸特征提取的过程,人脸配准算法的计算耗时都要少很多。

举例说明:输入图像以及输出结果如下,绿色圆点标注出了五官位置。

3、人脸属性识别(Face Attribute)

“人脸属性识别(Face Attribute)”是识别出人脸的性别、年龄、姿态、表情等属性值的一项技术。这在有些相机APP中有所应用,可以自动识别摄像头视野中人物的性别、年龄等特征并标注出来。

一般的人脸属性识别算法的输入是“一张人脸图”和“人脸五官关键点坐标”,输出是人脸相应的属性值。人脸属性识别算法一般会根据人脸五官关键点坐标将人脸对齐,具体过程为旋转、缩放、抠取等操作后,将人脸调整到预定的大小和形态,以便之后进行属性分析。

人脸的属性识别包括性别识别、年龄估计、表情识别、姿态识别、发型识别等等方面。一般来说每种属性的识别算法过程是独立的,但是有一些新型的基于深度学习实现的算法可以实现同时输出年龄、性别、姿态、表情等属性识别结果。