1、课堂是学习的主阵地,要学会高效听课。
①课前要先预习,找出不懂的知识、发现问题,带着知识点和问题去听课会有解惑的快乐,也更听得进去,容易掌握;②参与交流和互动,不要只是把自己摆在“听”的旁观者,而是“听”的参与者,积极思考老师讲的或提出的问题,能回答的时候积极回答(回答问题的好处不仅仅是表现,更多的是可以让你注意力更集中)。③听要结合写和思考。纯粹的听很容易懈怠,能记住的点也很少,所以一定要学会快速的整理记忆。④如果你因为种种原因,出现了那些似懂非懂、不懂的知识,课上或者课后一定要花时间去弄懂,不然问题只会越积越多。
2、学会整合知识点,提高知识理解和记忆能力。
把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,这样会让你的大脑、思维条理清醒,方便记忆、温习、掌握。同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。这样能够促进理解,加深记忆。
3、没有记忆就没有学习,记忆是学习的根本。
提高记忆力,可以专门的训练一下。这一类的训练比较多,比如我比较熟悉的:速读记忆、编码记忆、思维导图记忆。速读记忆是一种快速阅读之后的重点记忆和理解记忆;编码记忆是一种将编码信息与恰当的线索联系起来的个性化记忆;思维导图记忆是一种将所需记忆内容整合成关键词句后的思维记忆。以上三种记忆,是我个人用下来比较好用的方法,但都需要系统的训练,具体比较多,就不一一详细讲述了,大家可以自己去了解,或者参考精英特速读记忆训练软件,软件中对我上述的三种训练都有具体的讲解和训练。
4、高效复习,温故而知新。
①制定阶段性的复习目标,合理规划自己每一天的学习复习任务。什么时候复习什么科目,什么时候做题训练,什么时候看书背诵,什么时候查缺补漏等等,都一一明确下来。
②复习的时候,不要长时间的只复习一科,也不要频繁的更换复习科目。每一个时段的复习都要保证学科的完整性,按计划复习完一个学科再进行另外一个学科的复习。
③自己在复习的时候,一定要跟上老师的节奏,最好就保持同步进行。如果你掌握的很好,可以快于老师的安排,但不能被老师远远落下。
④每一小阶段的复习之后,要检查掌握情况。可以自己一个人进行:合起书本,回忆一下这一阶段都学习复习了哪些知识,哪些知识是已经掌握了的,哪些是比较模糊的、还没有掌握的、有疑问的,针对有问题的要趁热打铁,折回去快速温习巩固。也可以找你的伙伴一起进行,相互检查、考校。
5、认真做题和面对每一次考试。
做题的时候:①要仔细审题,而且要审准、审透,提炼出有效信息。②要讲究效率,会的就过(一定是要真的会,而不是感觉会),把时间放在不会的上。③不要动不动就去看答案解析。看答案做题会让你觉得题目很简单,但实际做题的时候就不知道如何下笔了。④适当进行题海战术,掌握各类型题目的解题思路。
认真面对每一次考试。考试除了是检验你学习效果的方式,同时也是你积累经验的过程,比如:①学会如何分配和把控时间;②掌握作答中各种细节的处理技巧;③磨练考试心态;④帮助自己认识掌握的不足之处,复习提升。
一、怎样才能提高自己的解题能力?
1.模仿书本上的例题解题过程,模仿老师的解题过程。解题是一种本领,就像游泳、滑雪、弹钢琴一样,开始只能靠模仿才能够学到它。
2.实践。如果你不亲自下水游泳,你就永远也学不会游泳,因此,要想获得解题能力,就必须要做习题,并且要多做习题。
3.提高自己的解题能力,光靠模仿是不够的,你必须要及时归纳总结,甚至把一类题的解题技巧找到,形成自己的秘笈。
4.精通以下几类数学思想(所谓思想就是指导我们实践的理论方法,这里主要指想法或方法):1转化思想。2方程思想。3形数结合思想。4函数思想。5.整体思想6分类讨论思想.7统计思想。拿分类讨论思想来举例,分类讨论是中学数学中一种重要的思想方法,在每年的中考中都会涉及到有关分类讨论方面的试题,而许多同学在解答过程中经常会出现漏解、讨论不完整的现象。这究竟是为什么呢?
1)概念不清,导致漏解:对所学知识概念不清,领会不够深刻,导致答题不完整。例:a.已知(a-3)x>6,求x的取值范围。b.若y2+(k+2)y+16是完全平方式,求k。
2)思维固定,导致漏解:在日常解题过程中,许多同学往往受平时学习中习惯性思维的影响,导致解题不全面。例:a.若等腰三解形腰上的高等于腰长的一半、求底角。b.若直角三角形三条边分别为3、4、c,求c的值。c.圆O的半径为5cm,两条互相平行的弦长分别为6cm、8cm,求两条弦之间的距离。
二、学习数学应注意培养什么样的能力?
1.运算能力,否则每次考试大题第一题你就开始错!
2.空间想象能力,否则几何题会让你痛不欲生!
3.逻辑思维能力,否则以后的证明题和推导题会让你生不如死!
4.将实际问题抽象为数学问题的能力,不然应用题会让你虽死犹生!
5.形数结合互相转化的能力。这考试每次考试的压轴题哦!
6.观察、实验、比较、猜想、归纳问题的能力。不然每次选择或者填空题的最后一题找规律会让你内流满面!
7.研究、探讨问题的能力和创新能力。不然每次的附加题咱们就不用看了!
三、数学解题最常用的方法是什么?
1、配方法
2、因式分解法
3、换元法
4、判别式法与韦达定理
5、待定系数法
6、构造法
7、反证法
8、面积法
9、几何变换法:几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
拿第十个来举例:要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面介绍常用方法。(1)直接推演法(2)验证法(3)特殊元素法(4)排除、筛选法(5)图解法(6)分析法
四、学好数学的流程是什么?
1.预习:在课前把老师即将讲授的单元内容浏览一次,并留意不了解的部分。
2.专心听讲:
(1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误,更重要的是思维能力的学习、培养。
(2)上课时一面听讲就要一面把重点背下来,而非都记,有甚者连老师的口水话也记上,纯属浪费。
(3)待回家后只需花很短的时间,便能将今日所教的课程复习完毕,事半而功倍。只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什么都不记得,白白浪费一节课,老师所讲又还给了老师,真可惜、遗憾。
3.课后练习
(1)整理重点
(2)适当练习
(3)练习时一定要亲自动手演算。
4.测验
(1)考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。
(2)考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢,移项以及加减乘除都要小心处理,少使用"心算"。
(3)考试时,我们的目的是要得高分、满分,而不是作学术研究,所以遇到较难的题目不要硬做,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到甚至超常发挥的效果。
(4)考试时,容易紧张的同学,有两个可能的原因:
a.准备不够充分,以致缺乏信心。这种人要加强考前的准备,注重基础。
b.对得分预期太高,万一遇到几个难题解不出来,心思不能集中,造成分数更低。这种人必须调整心态,给自己的要求是:尽自己的最大能力去做就行。
5.找错、补强:
测验后,不论分数高低,要将做错的题目再订正一遍,务必找出错误之处、原因,修正观念,如此才能学得更好、真正进步。
6.回想:
一个单元学完后,同学们要从头到尾把整个章节的重点内容回想一遍,特别注意标题,一般而言,每个小节的标题就是该小节的主题,也是最重要的。将主题重点回想一遍,才能完整了解我们在学些什么东西。
五、数学学习有技巧吗?
技巧肯定是有的,但是需要咱们不断的练习技巧,不然没有任何用处。
推荐一个中考数学作辅助线规律总结:
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难
恩,首先得说明一下,一般来讲,学习数学男生的优势在于思维的活跃,女生的优势在于细心,当然这也并不绝对。
现在初中的数学难度相对较小,而且学习任务比以前要轻松一些,应该不存在没时间多做题的问题吧?~~
思维除了天生的因素,还有后天的训练,如果觉得思维跟不上的话,就要多练习了,熟能生巧!中学的数学(初中和高中)在教学大纲很少改动的情况下,考试内容、难度都不会有太大的浮动。平时要多做题,多练习,掌握了出题的套路、解题的方法,就没什么难度可言了。
上课的时候一定要听讲,不要觉得某些内容简单就不听,数学学习是很系统的,而老师总会在讲解基础知识时提到一些常见问题的解决方法,如果这些靠自己去摸索的话,会浪费很多时间。(我就吃过这方面的大亏的!)
我做过中学生家教,学生粗心这个问题确实很麻烦,这个问题也不可能一蹴而就的解决,只能在平时的时候养成细心的习惯,做题的时候认真看题,一字一字的读清楚,不要去节约那点时间!
希望这些意见可以帮到你!
数学学习:
1、以本为本,掌握基础知识;
2、做好知识点、重难点梳理;
3、做好每单元思维导图,确保掌握书本知识;
4、多动手证实数理公式,通过实践获取比死记硬背效果更好;
5、多做些题目,不是为了刷题,而是为看看出题老师为什么这么出题,想考哪些知识点,还能结合哪些知识点考察等等。
另外,注意培养数学学习兴趣。
在初中数学的学习中,几何一直是大多数学生的难题,那么学习几何到底有没有捷径呢?我们又应该怎样来学习几何呢?
(一)对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题。
(二)善于归纳总结,熟悉常见的特征图形。
(三)熟悉解题的常见着眼点,常用辅助线作法,把大问题细化成各个小问题,从而各个击破,解决问题。
(四)考虑问题全面也是学好几何至关重要的一点。
总之,学好几何必须在牢固掌握基础知识的基础上注意平时的点滴积累,善于归纳总结,熟悉解题的常见着眼点,当然做到这些必须要有一定数量的习题积累,我们并不提倡题海战术,但做适量的习题还是必要的,只有量的积累才能达到质的飞跃。