x→0+,1/x→+∞,e^(1/x)就是e的正无穷次方,结果仍为正无穷;
x→0-,1/x→-∞,e^(1/x)就是e的负无穷次方,相当于1/e^(+∞),也就是说分母无穷大,因此极限为0。
此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,极限是一种“变化状态”的描述。
求极限基本方法有
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
2、无穷大根式减去无穷大根式时,分子有理化;
3、运用两个特别极限;
4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
人家知道极限是多少,问的是为什么,楼上都是答非所问. x→0+,1/x→+∞,e^(1/x)就是e的正无穷次方,结果仍为正无穷; x→0-,1/x→-∞,e^(1/x)就是e的负无穷次方,相当于1/e^(+∞),也就是说分母无穷大,因此极限为0.
因为2的x分之一次方趋于正无穷,2的负x分之一等于1/2的x分之一,所以1/2的x分之一趋于0