大一高数如何用极限定义证明“0.9的循环等于1”?

2024-12-20 18:11:27
推荐回答(3个)
回答1:

解:设an=0.1^n*9,Sn为数列{an}的前n项和,

①根据等比数列求和公式可知Sn=(a1-a1*0.1^n)/(1-0.1)=a1(1-1*0.1^n)/0.9=1-0.1^n(a1=0.1^1*9=0.9);

②根据极限定义任给E>0,不妨设1>E>0,取N=[-lgE]+1,则当n>N时,0.1^n<0.1^N<0.1^(-lgE)=E;

最后,得到Sn当n趋向于无穷时极限为1,而此极限就是0.9的循环。

“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”。

回答2:

设an=0.1^n*9,Sn为数列{an}的前n项和,则根据等比数列求和公式可知Sn=(a1-a1*0.1^n)/(1-0.1)=a1(1-1*0.1^n)/0.9=1-0.1^n(a1=0.1^1*9=0.9),根据极限定义任给E>0,不妨设1>E>0,取N=[-lgE]+1,则当n>N时,0.1^n<0.1^N<0.1^(-lgE)=E,这样就得到Sn当n趋向于无穷时极限为1,而此极限就是0.9的循环

回答3:

极限本来就是无限接近于,所以,0.999...≠1