△ABC中,∵S△ABC= 1 2 ab?sinC,由余弦定理:c2=a2+b2-2abcosC,且 2S=(a+b)2-c2 ,∴absinC=(a+b)2-(a2+b2-2abcosC),整理得sinC-2cosC=2,∴(sinC-2cosC)2=4.∴ (sinC?2cosC)2 sin2C+cos2C =4,化简可得 3tan2C+4tanC=0.∵C∈(0,180°),∴tanC=- 4 3 ,故选C.