设a、b、c、d为正数,且a눀=b눀=1,c눀=d눀=4,ac+bd=2,则(a+b)⼀(c+d)=

2024-12-16 15:36:28
推荐回答(2个)
回答1:

a=sinα,b=cosα,c=2cosβ,d=2sinβ,α,β∈﹙0,π/2﹚
2sinαcosβ+2cosαsinβ=2
sin(α+β)=1
α+β=π/2
(a+b)/(c+d)=√2sin(α+π/4)/[2√2sin(β+π/4)]
=sin(α+π/4)/[2sin(3π/4-α)]
=sin(α+π/4)/[2sin(α+π/4)]=1/2

回答2:

得a,b 为1c,d为2
∵ac+bd=2
∴a+b=2
c+d=4
∴为1/2