用配方法证明代数式2x^2+x-3的值不小于-25⼀8

2024-12-27 03:05:42
推荐回答(4个)
回答1:

2x^2+x-3=2(x+1/4)^2-25/8
<=-25/8

回答2:

2x^2 + x - 3 = 2(x^2 + x/2 + 1/16) - 3 - 1/8

= 2(x + 1/4)^2 - 25/8

因为无论x取何值,都有:(x + 1/4)^2 >= 0

所以,2(x + 1/4)^2 - 25/8 >= -25/8

即代数式2x^2+x-3的值不小于-25/8.

回答3:

2x^2+x-3
=2[x^2+(1/2)x+1/16-1/16]-3
=2[x^2+(1/2)x+1/16]-2×(1/16)-3
=2[x^2+(1/2)x+1/16]-[2×(1/16)+3]
=2(x+1/4)^2-25/8
2(x+1/4)^2-25/8≥-25/8(因为2(x+1/4)^2≥0)
所以代数式2x^2+x-3的值不小于-25/8

回答4:

22