(1⼀2+1⼀3+1⼀4+...+1⼀20)+(2⼀3+2⼀4+2⼀5...+2⼀20

2024-12-17 05:33:36
推荐回答(2个)
回答1:

(1/2+1/3+1/4+...+1/20)+(2/3+2/4+2/5...+2/20)+(3/4+3/5+...+3/20)+...+(18/19+18/20)+19/20

[1+2+3+...+(n-1)]/n=n(n-1)/2n=(n-1)/2

(1/2+1/3+1/4+...+1/20)+(2/3+2/4+2/5+...+2/20)+(3/4+3/5+...+3/20)+...+(18/19+18/20)+19/20

=1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/20+2/20+3/20+...+19/20)
=(2-1)/2+(3-1)/2+(4-1)/2+...+(20-1)/2
=(1+2+3+...+20)/2
=20*21/4
=5*21
=105

回答2:

等差数列,1/2为首项,1/2为等差,19项。和为[1/2+1/2+(1/2)*18]*19/2=95