证明:如果B的平方=AC,则(A+B+C)(A-B+C)(A的平方-B的平方+C的平方)=A的4次方+B的4次方+C的4次方

正确,要过程
2024-12-29 19:49:50
推荐回答(3个)
回答1:

B²=AC
所以2AC-B²=B²

B²=AC
B^4=A²C²
所以2A²C²-B^2=B^4

(A+B+C)(A-B+C)(A²-B²+C²)
=[(A+C)+B][(A+C)-B](A²-B²+C²)
=[(A+C)²-B²](A²-B²+C²)
=(A²+C²+2AC-B²)(A²-B²+C²)
=(A²+B²+C²)(A²-B²+C²)
=[(A²+C²)+B²][(A²+C²)+B²]
=(A²+C²)²-B^4
=A^4+C^4+2A²C²-B^4
=A^4+C^4+B^4

回答2:

BB=AC
则 (A+B+C)(A+C-B)(AA-BB+CC)
=【(A+C)^2-BB】(AA-BB+CC)
=[AA+CC+2AC-BB](AA-BB+CC)
=(AA+CC+2BB-BB)(AA-BB+CC)
=(AA+CC+BB)(AA+CC-BB)
=(AA+CC)^2-BBBB
=AAAA+CCCC+2AACC-BBBB
=AAAA+CCCC+2BBBB-BBBB
=AAAA+BBBB+CCCC

很简单的一道推算题啊,好好算就可以了,别怕,

回答3:

用平方差公式.