谁有2015年天津中考各区模拟题

谁有2015年天津中考各区模拟题最好是电子版,多谢了各位
2025-02-01 00:53:49
推荐回答(2个)
回答1:

2017年天津市中考数学试卷

获取答案详解以及其他省市的历年中考真题【2015-2017】

请关注【初中智慧君(微信搜索:gzzhkt)】

一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)

1.(3分)计算(﹣3)+5的结果等于(  )

A.2      B.﹣2  C.8      D.﹣8

2.(3分)cos60°的值等于(  )

A.   B.1      C.   D.

3.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是(  )

A. B. C.      D.

4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为(  )

A.0.1263×108 B.1.263×107   C.12.63×106   D.126.3×105

5.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是(  )

A.  B.  C. D.

6.(3分)估计的值在(  )

A.4和5之间   B.5和6之间   C.6和7之间   D.7和8之间

7.(3分)计算的结果为(  )

A.1      B.a      C.a+1  D.

8.(3分)方程组的解是(  )

A.    B.    C.    D.

9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是(  )

A.∠ABD=∠E   B.∠CBE=∠C   C.AD∥BC  D.AD=BC

10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是(  )

A.y1<y2<y3    B.y2<y3<y1    C.y3<y2<y1    D.y2<y1<y3

11.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是(  )

A.BC   B.CE    C.AD   D.AC

12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为(  )

A.y=x2+2x+1     B.y=x2+2x﹣1   C.y=x2﹣2x+1   D.y=x2﹣2x﹣1

二、填空题(本大题共6小题,每小题3分,共18分)

13.(3分)计算x7÷x4的结果等于     .

14.(3分)计算的结果等于     .

15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是     .

16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是     (写出一个即可).

17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为     .

18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.

(1)AB的长等于     ;

(2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)     .

三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)

19.(8分)解不等式组

请结合题意填空,完成本题的解答.

(1)解不等式①,得     ;

(2)解不等式②,得     ;

(3)把不等式①和②的解集在数轴上表示出来:

(4)原不等式组的解集为     .

20.(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

(1)本次接受调查的跳水运动员人数为     ,图①中m的值为     ;

(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.

21.(10分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.

(1)如图①,求∠T和∠CDB的大小;

(2)如图②,当BE=BC时,求∠CDO的大小.

22.(10分)如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).

参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,取1.414.

23.(10分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.

设在同一家复印店一次复印文件的页数为x(x为非负整数).

(1)根据题意,填写下表:

(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;

(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.

24.(10分)将一个直角三角形纸片ABO放置在平面直角坐标系中,点,点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.

(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;

(2)如图②,当P为AB中点时,求A'B的长;

(3)当∠BPA'=30°时,求点P的坐标(直接写出结果即可).

25.(10分)已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).

(1)求该抛物线的解析式和顶点坐标;

(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.

①当点P'落在该抛物线上时,求m的值;

②当点P'落在第二象限内,P'A2取得最小值时,求m的值.

回答2:

网页链接就这个去看吧