设向量a=(1 1 1 ... 1)T显然J=(1 1 1 ... 1)T(1 1 1 ... 1)=aaTJJ=(aaT)(aaT)=a(aTa)aT = a(n)aT = n(aaT)=nJ则(E-J)(E-J/(n-1))=E-J-J/(n-1)+JJ/(n-1)=E-J-J/(n-1)+nJ/(n-1)=E因此E-J可逆,且逆矩阵是E-J/(n-1)