有理数的问题,急急急~~~~~~~~·

2024-11-29 16:55:41
推荐回答(6个)
回答1:

不能。因为分数可以化为有限小数和无限小数,而无限小数是无理数不是有理数所以不对。没有确切有理数概念。整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。
不能。因为它等于0,0是整数,真分数是指分子小于分母的大于零的数,举个例 9/12就是一个真分数,0/3不是分数。

回答2:

整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。
0是有理数,可以做分子
0/3的写法成立,但平时不用

回答3:

能化成分数的数都叫做有理数……正确
整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。
0可以做分子,0/3也没错

回答4:

整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。
任何一个有理数都可以在数轴上表示。
无限不循环小数和开根开不尽的数叫作无理数 ,比如π,3.1415926535897932384626......
而有理数恰恰与它相反,整数和分数统称为有理数
包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。
这一定义在数的十进制和其他进位制(如二进制)下都适用。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογος ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
有理数分为整数和分数
整数又分为正整数、负整数和0
分数又分为正分数、负分数
正整数和0又被称为自然数
如3,-98.11,5.72727272……,7/22都是有理数。
全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。
有理数集是实数集的子集。相关的内容见数系的扩张。
有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):
①加法的交换律 a+b=b+a;
②加法的结合律 a+(b+c)=(a+b)+c;
③存在数0,使 0+a=a+0=a;
④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;
⑤乘法的交换律 ab=ba;
⑥乘法的结合律 a(bc)=(ab)c;
⑦分配律 a(b+c)=ab+ac;
⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a;
⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
⑩0a=0 文字解释:一个数乘0还等于0。
此外,有理数是一个序域,即在其上存在一个次序关系≤。
有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。
值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
有理数加减混合运算
1.理数加减统一成加法的意义:
对于加减混合运算中的减法,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,我们把这样的式子叫做代数和。
2.有理数加减混合运算的方法和步骤:
(1)运用减法法则将有理数混合运算中的减法转化为加法。
(2)运用加法法则,加法交换律,加法结合律简便运算。
有理数范围内已有的绝对值,相反数等概念,在实数范围内有同样的意义。

回答5:

整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。

回答6:

由于绝对值与平方都没有负的,因此它们也就没有正的,都是0,因此a=2,b=1
代入下面的式子
1/(2*1)=1/1-1/2
1/(3*2)=1/2-1/3
1/(4*3)=1/3-1/4
-----------------------
1/(2011*2010)=1/2010-1/2011
加起来中间的都抵消了,结果是1/1-1/2011=2010/2011