(1)解:设第一车间原有x人,第二车间原有y人,则由题意:
x=4y/5-30,
x+10=3(y-10)/4;
即
5x-4y=-150……(1)
4x-3y=-70……(2)
-(1)*4+(2)*5,得
y=250
代入(1),知道5x-1000=-150,故x=170。
答:第一车间原有170人,第二车间原有250人。
(2)解:设有篮球x个,排球y个。由题意,
x=2y-3,
x:y=3:2
即
x=2y-3……(1)
2x=3y……(2)
将(1)代入(2),得4y-6=3y,故y=6。
代入(1),得x=9。
答:篮球有9个,排球有6个。
(3)解:设骑车用了x小时,步行用了y小时。由题意,
x+y=1.5……(1)
15x+5y=20……(2)
(2)-(1)*5,得
10x=12.5
x=1.25
代入(1),得y=0.25。
答:骑车用了1小时15分钟,步行了15分钟。
1.
解:设第2车间有X人
X-4/5X=30
1/5X=30
X=150
则第1车间有150×4/5=120人
120+150=270人
2.(150-10)-(120+10)
=140-130
=10人
答:2车间共270人,第一车间比第二车间多10人
2.
足球数与排球数的比是2:3,所以,足球数+排球数的总数就等于排球数的(2+3)/3=5/3倍。
篮球数等于排球数的2倍减3个。
所以三种球的总数就等于排球数的5/3倍加2倍少3个。
所以,排球数=(41+3)÷[2+(2+3)/3]=12个;
篮球数=12×2-3=21个
足球数=12÷3×2=8个
3.
汽车3/4小时,步行1/4小时
设步行时间为x小时,则骑车的时间为(1-x)小时,由题意列方程
20=5x+25(1-x),解得x=1/4,即步行时间1/4小时。