∵A,B为锐角,则0∴0∵COS(2A+B)=3/5>0,∴0<2A+B<90°.∴sin(A+B)>0,sin(2A+B)>0.∵cos(A+B)=12/13,cos(2A+B)=3/5,∴sin(A+B)=5/13,sin(2A+B)=4/5.故cosA=cos[(2A+B)-(A+B)] =cos(2A+B)cos(A+B)+sin(2A+B)sin(A+B) =(3/5)(12/13)+(4/5)(5/13) =56/65.
sin(A+B)=√[1-(12/13)²]=5/13sin(2A+B)=√[1-(3/5)²]=4/5cosA=cos[(2A+B)-(A+B)]=(3/5)(12/13)+(4/5)(5/13)=56/65