设结果为A
A=1+1/2+1/3+1/4+1/5+......+1/15+1/16
=1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+...+1/15+1/16)
>1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+(1/16+...+1/16+1/16)
=1+1/2+(1/4×2)+(1/8×4)+(1/16×8)
=1+1/2+1/2+1/2+1/2=3
另一方面,
A=1+1/2+1/3+1/4+1/5+......+1/15+1/16
=1+1/2+(1/3+1/4+1/5)+(1/6+1/7+1/8)+(1/9+1/10+1/11)+(1/12+1/13+1/14+1/15+1/16)
<1+1/2+(1/3+1/3+1/3)+(1/6+1/6+1/6)+(1/9+1/9+1/9)+(1/12+1/12+1/12+1/12+1/12)
=1+1/2+(1/3×3)+(1/6×3)+(1/9×3)+(1/12×5)
=1+1/2+1+1/2+1/3+5/12
=3又3/4
综上,得:
3不难看出,A的整数部分是3。
(1+1/2)*(1-1/3)=1 (1+1/4)*(1-1/5)=1……
同理前面和后面均可以配对之后所得积等于1.
所以原式=1
A=1+1/2+1/3+1/4+1/5+......+1/15+1/16
=1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+...+1/15+1/16)
>1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+(1/16+...+1/16+1/16)
=1+1/2+(1/4×2)+(1/8×4)+(1/16×8)
=1+1/2+1/2+1/2+1/2=3
另一方面,
A=1+1/2+1/3+1/4+1/5+......+1/15+1/16
=1+1/2+(1/3+1/4+1/5)+(1/6+1/7+1/8)+(1/9+1/10+1/11)+(1/12+1/13+1/14+1/15+1/16)
<1+1/2+(1/3+1/3+1/3)+(1/6+1/6+1/6)+(1/9+1/9+1/9)+(1/12+1/12+1/12+1/12+1/12)
=1+1/2+(1/3×3)+(1/6×3)+(1/9×3)+(1/12×5)
=1+1/2+1+1/2+1/3+5/12
=3又3/4
得:
3不难看出,A的整数部分是3。
1