可微和可导是什么关系?

2025-01-02 07:51:30
推荐回答(2个)
回答1:

一元函数中可导与可微等价,即为充分必要条件。
多元函数可微必可导,而反之不成立,即可导是可微的充分不必要条件。
/iknow-pic.cdn.bcebos.com/fc1f4134970a304eb18f831dddc8a786c8175ca3"target="_blank"title="点击查看大图"class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/fc1f4134970a304eb18f831dddc8a786c8175ca3?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="https://iknow-pic.cdn.bcebos.com/fc1f4134970a304eb18f831dddc8a786c8175ca3"/>
拓展资料:
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
可微和可导对一元单值函数来说是等价的,但是对于一般的函数来说是不等价的。一个这样的多元向量函数在一点可微,当且仅当它的所有偏导数在那一点存在并连续。这是因为导数和微分本质是两种东西,前者是函数在某个方向上的变化率,后者是映射的局部线性近似。

回答2:

可导和可微的关系:可微=>可导=>连续=>可积,在一元函数中,可导与可微等价。

可导与连续的关系:可导必连续,连续不一定可导。

可微与连续的关系:可微与可导是一样的。

可积与连续的关系:可积不一定连续,连续必定可积。

可导与可积的关系:可导一般可积,可积推不出一定可导。

可微条件

若函数在某点可微分,则函数在该点必连续。

若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

充分必要条件:函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。

函数可导与连续的关系:

定理:若函数f(x)在x0处可导,则必在点x0处连续。上述定理说明:函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。