lim[x=y,x-->0](xy)^2/(x^2+y^2)^2=lim[x=y,x-->0]x^4/(4x^4)=1/4lim[y=2x,x-->0](xy)^2/(x^2+y^2)^2=lim[y=2x,x-->0]4x^4/(25x^4)=4/25二者不相等所以极限不存在
limxy/(x^2+y^2) (分子分母共同除以xy) =lim1/[1/(x^2)+1/(y^2)] 因为lim1/(x^2)→无穷大 lim1/(y^2)→无穷大 故lim1/[1/(x^2)+1/(y^2)]=0 有limxy/(x^2+y^2)=0