请给我一些初高中衔接部分的数学方程(组)和不等式(组)试题和一写化简题,谢谢

2024-12-14 16:03:14
推荐回答(4个)
回答1:

关于x的方程x^2+(2a^2+a-根号下2a^2+a+6)x+a=0的两实数根之和互为相反数则a?
根号3x^2-5x-12 - 根号2x^2-11x+15 =x-3
根号下x^2+(y+1)^2=根号10
根号下(3-x)^2+y^2=根号20
已知实数x,y满足关系式1/2(x+y+5)=2√x+1,+ √y-1,求X与Y 的值
X^4*Y^4/X^4+y^4+6X^2*Y^2+4X^3*Y+4XY^3=________________
问题补充:已知x=2/(2+√3-√5),y=2/(2+√3+√5)
x+1-2|x-2||-|x+1|=18问x等于多少?
1、|2x-1|-|x-2|=9
2、|x|+|x+1|-|3-x|=2x+4
3、|2x+3|+|x-1|=|3x+2|
4、x、y同时满足
|y|-y=0
|x-3|+x-3=0
|y-x|+y-x=0
1.方程3(|x|-1)=|x|/5+1的解是什么? 方程|3x-1|=|2x+1|的解是什么? 2.解方程 <1>||3x-5|+4|=8 <2>|4x-3|-2=3x+4 (注:“| |”表示绝对值 2.<2>意思是3x-5的绝对值再加上4,所得结果的绝对值。。。)
1. |2x-1|+|x-2|=|x+1|
2. 求方程|x-3|+|x+2|=5的整数解
x^2-xy-2y=0
y-xy=0
(1)X^2+(Y-3)^2=(X-1)^2+(4-Y)^2
(2)Y=-X^2+2X+3
x^2-2xy+3y^2=9
4x^2-5xy+6y^2=30
小明家离火车站很近,他每天都可以根据车站大楼的钟声起床。车站大楼的钟,每敲响一下延时3 秒,间隔1 秒后再敲第二下。假如从第一下钟声响起,小明就醒了,那么到小明确切判断出已是清晨6 点,前后共经过了几秒钟?

1. 从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同的走法共有 种.
2. 甲、乙、丙3个班各有三好学生3,5,2名,现准备推选两名来自不同班的三好学生去参加校三好学生代表大会,共有 种不同的推选方法.
3. 从甲、乙、丙三名同学中选出两名参加某天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动.有 种不同的选法.
4. 从a、b、c、d这4个字母中,每次取出3个按顺序排成一列,共有 种不同的排法.
5. 若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,则选派的方案有 种.
6. 有a,b,c,d,e共5个火车站,都有往返车,问车站间共需要准备 种火车票.
7. 某年全国足球甲级联赛有14个队参加,每队都要与其余各队在主、客场分别比赛一场,共进行 场比赛.
8. 由数字1、2、3、4、5、6可以组成 个没有重复数字的正整数.
9. 用0到9这10个数字可以组成 个没有重复数字的三位数.
10. (1)有5本不同的书,从中选出3本送给3位同学每人1本,共有 种不同的选法;
(2)有5种不同的书,要买3本送给3名同学每人1本,共有 种不同的选法.
11. 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的陈列方式有 种.
12. (1)将18个人排成一排,不同的排法有 少种;
(2)将18个人排成两排,每排9人,不同的排法有 种;
(3)将18个人排成三排,每排6人,不同的排法有 种.
13. 5人站成一排,(1)其中甲、乙两人必须相邻,有 种不同的排法;
(2)其中甲、乙两人不能相邻,有 种不同的排法;
(3)其中甲不站排头、乙不站排尾,有 种不同的排法.
14. 5名学生和1名老师照相,老师不能站排头,也不能站排尾,共有 种不同的站法.
15. 4名学生和3名老师排成一排照相,老师不能排两端,且老师必须要排在一起的不同排法有 种.
16. 停车场有7个停车位,现在有4辆车要停放,若要使3个空位连在一起,则停放的方法有 种.
17. 在7名运动员中选出4名组成接力队参加4×100米比赛,那么甲、乙都不跑中间两棒的安排方法有 种.
18. 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有 种取法;
(2)从口袋内取出3个球,使其中含有1个黑球,有 种取法;
(3)从口袋内取出3个球,使其中不含黑球,有 种取法.
19. 甲,乙,丙,丁4个足球队举行单循环赛:
(1)共需比赛 场;
(2)冠亚军共有 种可能.
20. 按下列条件,从12人中选出5人,有 种不同选法.
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;
21. 某歌舞团有7名演员,其中3名会唱歌,2名会跳舞,2名既会唱歌又会跳舞,现在要从7名演员中选出2人,一人唱歌,一人跳舞,到农村演出,问有 种选法.
22. 从6名男生和4名女生中,选出3名男生和2名女生分别承担A,B,C,D,E五项工作,一共有 种不同的分配方法.
一、选择题(本题共10小题,每小题4分,满分40分)
1、下列运算正确的是( )
A. 4 =±2 B.2-3=-6 C.x2•x3=x6 D.(-2x)4=16x4
2、随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2006年海外学习汉语的学生人数已达38 200 000人,用科学记数法表示为( )人(保留3个有效数字)
A.0.382×10 B.3.82×10 C.38.2×10 D.382×10
4、 在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是 ( )
A. B. C. D.
6、 甲、乙、丙三名同学参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的,三位同学身高忽略不计),则三人所放的风筝中 ( )
同学 甲 乙 丙
放出风筝线长 100m I00m 90m
线与地面夹角 40° 45° 60°
A .甲的最高 B .丙的最高 C .乙的最低 D .丙的最低
7、国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市
某中学国家免费提供教科书补助的部分情况.
七 八 九 合计
每人免费补助金额(元) 110 90 50
人数(人) 80 300
免费补助总金额(元) 4000 26200
如果要知道空白处的数据,可设七年级的人数为x,八年级的人数为y,
根据题意列出方程组为( )
A. B .
C. D .
8、 有六个等圆按甲、乙、丙三种形式摆放,使相邻两圆相互外切,且
如图所示的连心线分别构成正六边形,平行四边形和正三角形,将圆心
连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q则( )
14、2007年1月1日起,某市全面推行农村合作医疗,农民每年每人只拿
出10元就可以享受合作医疗,住院费报销办法如下表:
住院费(元) 报销率(%)
不超过3000元的部分 15
3000——4000的部分 25
4000——5000的部分 30
5000——10000的部分 35
10000——20000的部分 40
超过20000的部分 45
某人住院费报销了880元,则住院费为__________元.
1、点B在y轴上,位于原点上方,距离坐标原点4单位长度,则此点的坐标为 ;
6、一个正数x的平方根是2a 3与5 a,则a是_________.
7、若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是_____________.
8、如果25x2=36,那么x的值是______________.
9、已知AD是 ABC的边BC上的中线,AB=15cm,AC=10cm,则 ABD的周长比 ABD的周长大__________.
10、如果三角形的一个外角等于与它相邻的内角的2倍,等于与它不相邻的一个内角的4倍,则此三角形各内角的度数是_______________.
11、已知一个多边形的内角和与外角和共2160°,则这个多边形的边数是___________.
12、将点A先向下平移3个单位,再向右平移2个单位后,则得到点B( 2,5),则点A的坐标为 .
3、在平面直角坐标系中,标出下列个点:
点A在y轴上,位于原点上方,距离原点2个单位长度;
点B在x轴上,位于原点右侧,距离原点1个单位长度;
点C在x轴上,y轴右侧,距离每条两条坐标轴都是2个单位长度;
点D在x轴上,位于原点右侧,距离原点3个单位长度;
点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。
依次连接这些点,你觉得它像什么图形?(8分)

5、计算正五边形和正十边形的每一个内角度数。(5分)

6、一个多边形的内角和等于1260 ,它是几边形?(5分)

8、按要求解答下列方程(共8分)
(1) x+2y=9 (2) 2x-y=5
3x-2y=-1 3x+4y=2

三、二元一次方程组应用(每题7分,共35分)
1、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量之比(按瓶计算)为2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装个两种各有多少瓶?

2、2台大收割机5台小收割机工作2小时收割小麦3。6公顷,3台大收割机和2抬小收割机5小时收割小麦8公顷,一台大收割机和一台小收割机1小时各收割小麦多少公顷?

3、A市到B市的航线长1200km,一架飞机从A市顺风飞往B市需要2小时30分,从B市逆风飞往A市需要3小时20分,求飞机的平均速度和风速。

4、用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?

二元一次方程组专题专练
专讲一:二元一次方程组
(一)正确理解四个基本概念
1.二元一次方程:
含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程.从定义中可以看出:二元一次方程具备以下四个特征:
(1)是方程;(2)有且只有两个未知数;(3)方程是整式方程,即各项都是整式;(4)各项的次数最高为1,例如:像 中, 不是整式,所以 就不是二元一次方程;像x+1=6,x+y-3z=8,不是含有两个未知数,也不是二元一次方程;像xy+6=1中,虽然含有两个未知数x、y且次数都是1,但未知项xy的次数为2,所以也不是二元一次方程,所以二元一次方程必须同时具备以上四点.
2.二元一次方程组
含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组,它有两个特点:一是方程组中每一个方程都是一次方程;二是整个方程组中含有两个且只含有两个未知数,如 , , 都是二元一次方程组,但 就不是二元一次方程组.
3.二元一次方程的一个解
适合二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.
一般地二元一次方程的解有无数个,例如x+y=2中,由于x、y只是受这个方程的约束,并没有被取某一个特定值而制约,因此,二元一次方程有无数个解.
4.二元一次方程组的解
二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解.
定义中的公共解是指同时使二元一次方程组中的每一个方程左右两边的值都相等,而不是使其中一个或部分左右两边的值相等,由于未知数的值必须同时满足每一个方程,所以,二元一次方程组一般情况下只有唯一的一组解,即构成方程组的两个二元一次方程的公共解.
(二)熟练掌握两种基本方法
1.代入消元法
解方程组的基本思路是“消元”-------把“二元”转化为“一元”,其主要步骤是:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.其主要步骤可以概括成三句话:
(1)求关系式:用一个未知数的值去代替另一个未知数.
注意:求关系式时,应选取系数比较简单的方程进行变形.
(2)代入消元:将求得的关系式代入到另一个方程,消去其中的一个未知数,并求出另一个未知数的值.
注意:代入消元时,一定将求得的关系式代入另一个方程进行消元.
(3)回代得解:将求得的这个未知数的值代入关系式中,求出另一个未知数的值,最后写成方程解的形式.
回代得解时,应将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值,并写成方程解的形式,最后还要下结论.
2.加减消元法
通过两式相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.其主要步骤也可以概括成三句话:
(1)变换系数:将某一未知数的系数变成相等或互为相反数.
注意:变换系数时,要选取系数较为简单的未知数作为消元对象,不要漏乘方程中的某一项,特别是常数项!
(2)加减消元:就是将变形后的方程与另一个方程相加或相减,消去一个未知数.
注意:加减消元时,要将方程组中相同未知数上下对齐,以便观察是用加法还是用减法消元,并注意计算中容易错的地方,特别是符号!
(3)回代得解:
注意:回代得解时,可将求出的未知数的值回代到原来方程组中任意一个方程,从而求出另一个未知数的值,最后要写成解的形式!
总之,代入法和加减法都是解二元一次方程组最基本最常见的方法,在解方程组时,如果题目无具体要求,可选用任何一种方法,至于选择哪种方法,一定要先对系数进行认真观察分析,根据系数的具体特点,选择较为简便的方法.
(三)密切关注两种基本思想
1.消元思想:同学们在学会了代入法和加减法解二元一次方程组,首先要搞清解方程组的基本思想就是:“消元”,它的基本模式就是:二元一次方程组 一元一次方程,它的基本方法就是:代入法和加减法.通过代入或加减达到将
“二元”转化为“一元”的目的.
2.转化思想:解二元一次方程组的实质是通过消元将二元转化为一元,在这种“消元”中,渗透了化“未知”为“已知”的重要的转化思想方法.列二元一次方程组解决实际问题的实质是将实际问题转化为数学问题.
转化是一种重要的思想方法,在解题中主要体会这种思想方法的灵活应用.
(三)题型类析

专练一:
1.(06德州)已知方程组 的解为 ,则 的值为_____________.
2.(06南昌) 一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°∠2=y°,则可得到方程组为( )

A B C D
3.

专讲二:二元一次方程组的应用
(一)二元一次方程组的应用问题
1.列二元一次方程组的应用题的一般步骤
(1)审:弄清题意和题目中的数量关系;
(2)设:用字母表示题目中的一个未知数;
(3)找:找出能够表示应用题全部含义的一个相等关系;
(4)列:根据这个相等关系列出重要的代数式,从而列出方程;
(5)解:解这个所列出的方程;
(6)验:检验根是否符合实际情况;
(7)答:写出答案.
可以简记为:“审、设、找、列、解、验、答”七个字,请同学们要牢记.
2.注意实际问题中的基本数量关系及关键词
常用的数量关系有:(1)距离=速度×时间;(2)工作量=工作效率×工作时间;(3)商品的销售额=商品销售价×商品销售量;(4)商品的总销售利润=(销售价-成本价)×销售量;(5)商品售价=标价×折数(6)商品的利润率= ×100℅等等.
还要正确理解一些关键词表达的同类量之间的特殊的等量关系,如:“提前”、“超过”、“早到”、“迟到”、“几倍”、“增加了”、“相向而行”、“同向而行”等等.
3.列二元一次方程组的应用题常用策略
(1)“直接”与“间接转换:当直接设未知数不便时,转而设间接未知数来求解,反之亦然.
(2)“一元”与“多元”转换:当设一个未知数有困难时,可考虑设多个未知数求解,反之亦然.
(3)“部分”与“整体”转换:当整体设元有困难时,就考虑设其部分,反之亦然,如:数字问题.
(4)“一般”与“特殊”转换:当从一般情形入手困难时,就着眼于特殊情况,反之亦然.
(5)“文字”与“图表”转换:有的应用题,用文字语言表达较难,就可以用表格或图形来分析,这样既直观,也易理解题意.

1) 66x+17y=3967
25x+y=1200
答案:x=48 y=47
(2) 18x+23y=2303
74x-y=1998
答案:x=27 y=79
(3) 44x+90y=7796
44x+y=3476
答案:x=79 y=48
(4) 76x-66y=4082
30x-y=2940
答案:x=98 y=51
(5) 67x+54y=8546
71x-y=5680
答案:x=80 y=59
(6) 42x-95y=-1410
21x-y=1575
答案:x=75 y=48
(7) 47x-40y=853
34x-y=2006
答案:x=59 y=48
(8) 19x-32y=-1786
75x+y=4950
答案:x=66 y=95
(9) 97x+24y=7202
58x-y=2900
答案:x=50 y=98
(10) 42x+85y=6362
63x-y=1638
答案:x=26 y=62
(11) 85x-92y=-2518
27x-y=486
答案:x=18 y=44
(12) 79x+40y=2419
56x-y=1176
答案:x=21 y=19
(13) 80x-87y=2156
22x-y=880
答案:x=40 y=12
(14) 32x+62y=5134
57x+y=2850
答案:x=50 y=57
(15) 83x-49y=82
59x+y=2183
答案:x=37 y=61
(16) 91x+70y=5845
95x-y=4275
答案:x=45 y=25
(17) 29x+44y=5281
88x-y=3608
答案:x=41 y=93
(18) 25x-95y=-4355
40x-y=2000
答案:x=50 y=59
(19) 54x+68y=3284
78x+y=1404
答案:x=18 y=34
(20) 70x+13y=3520
52x+y=2132
答案:x=41 y=50
(21) 48x-54y=-3186
24x+y=1080
答案:x=45 y=99
(22) 36x+77y=7619
47x-y=799
答案:x=17 y=91
(23) 13x-42y=-2717
31x-y=1333
答案:x=43 y=78
(24) 28x+28y=3332
52x-y=4628
答案:x=89 y=30
(25) 62x-98y=-2564
46x-y=2024
答案:x=44 y=54
(26) 79x-76y=-4388
26x-y=832
答案:x=32 y=91
(27) 63x-40y=-821
42x-y=546
答案:x=13 y=41
(28) 69x-96y=-1209
42x+y=3822
答案:x=91 y=78
(29) 85x+67y=7338
11x+y=308
答案:x=28 y=74
(30) 78x+74y=12928
14x+y=1218
答案:x=87 y=83
(31) 39x+42y=5331
59x-y=5841
答案:x=99 y=35
(32) 29x+18y=1916
58x+y=2320
答案:x=40 y=42
(33) 40x+31y=6043
45x-y=3555
答案:x=79 y=93
(34) 47x+50y=8598
45x+y=3780
答案:x=84 y=93
(35) 45x-30y=-1455
29x-y=725
答案:x=25 y=86
(36) 11x-43y=-1361
47x+y=799
答案:x=17 y=36
(37) 33x+59y=3254
94x+y=1034
答案:x=11 y=49
(38) 89x-74y=-2735
68x+y=1020
答案:x=15 y=55
(39) 94x+71y=7517
78x+y=3822
答案:x=49 y=41
(40) 28x-62y=-4934
46x+y=552
答案:x=12 y=85
(41) 75x+43y=8472
17x-y=1394
答案:x=82 y=54
(42) 41x-38y=-1180
29x+y=1450
答案:x=50 y=85
(43) 22x-59y=824
63x+y=4725
答案:x=75 y=14
(44) 95x-56y=-401
90x+y=1530
答案:x=17 y=36
(45) 93x-52y=-852
29x+y=464
答案:x=16 y=45
(46) 93x+12y=8823
54x+y=4914
答案:x=91 y=30
(47) 21x-63y=84
20x+y=1880
答案:x=94 y=30
(48) 48x+93y=9756
38x-y=950
答案:x=25 y=92
(49) 99x-67y=4011
75x-y=5475
答案:x=73 y=48
(50) 83x+64y=9291
90x-y=3690
答案:x=41 y=92

(51) 17x+62y=3216
75x-y=7350
答案:x=98 y=25
(52) 77x+67y=2739
14x-y=364
答案:x=26 y=11
(53) 20x-68y=-4596
14x-y=924
答案:x=66 y=87
(54) 23x+87y=4110
83x-y=5727
答案:x=69 y=29
(55) 22x-38y=804
86x+y=6708
答案:x=78 y=24
(56) 20x-45y=-3520
56x+y=728
答案:x=13 y=84
(57) 46x+37y=7085
61x-y=4636
答案:x=76 y=97
(58) 17x+61y=4088
71x+y=5609
答案:x=79 y=45
(59) 51x-61y=-1907
89x-y=2314
答案:x=26 y=53
(60) 69x-98y=-2404
21x+y=1386
答案:x=66 y=71
(61) 15x-41y=754
74x-y=6956
答案:x=94 y=16
(62) 78x-55y=656
89x+y=5518
答案:x=62 y=76
(63) 29x+21y=1633
31x-y=713
答案:x=23 y=46
(64) 58x-28y=2724
35x+y=3080
答案:x=88 y=85
(65) 28x-63y=-2254
88x-y=2024
答案:x=23 y=46
(66) 43x+50y=7064
85x+y=8330
答案:x=98 y=57
(67) 58x-77y=1170
38x-y=2280
答案:x=60 y=30
(68) 92x+83y=11586
43x+y=3010
答案:x=70 y=62
(69) 99x+82y=6055
52x-y=1716
答案:x=33 y=34
(70) 15x+26y=1729
94x+y=8554
答案:x=91 y=14
(71) 64x+32y=3552
56x-y=2296
答案:x=41 y=29
(72) 94x+66y=10524
84x-y=7812
答案:x=93 y=27
(73) 65x-79y=-5815
89x+y=2314
答案:x=26 y=95
(74) 96x+54y=6216
63x-y=1953
答案:x=31 y=60
(75) 60x-44y=-352
33x-y=1452
答案:x=44 y=68
(76) 79x-45y=510
14x-y=840
答案:x=60 y=94
(77) 29x-35y=-218
59x-y=4897
答案:x=83 y=75
(78) 33x-24y=1905
30x+y=2670
答案:x=89 y=43
(79) 61x+94y=11800
93x+y=5952
答案:x=64 y=84
(80) 61x+90y=5001
48x+y=2448
答案:x=51 y=21
(81) 93x-19y=2
86x-y=1548
答案:x=18 y=88
(82) 19x-96y=-5910
30x-y=2340
答案:x=78 y=77
(83) 80x+74y=8088
96x-y=8640
答案:x=90 y=12
(84) 53x-94y=1946
45x+y=2610
答案:x=58 y=12
(85) 93x+12y=9117
28x-y=2492
答案:x=89 y=70
(86) 66x-71y=-1673
99x-y=7821
答案:x=79 y=97
(87) 43x-52y=-1742
76x+y=1976
答案:x=26 y=55
(88) 70x+35y=8295
40x+y=2920
答案:x=73 y=91
(89) 43x+82y=4757
11x+y=231
答案:x=21 y=47
(90) 12x-19y=236
95x-y=7885
答案:x=83 y=40
(91) 51x+99y=8031
71x-y=2911
答案:x=41 y=60
(92) 37x+74y=4403
69x-y=6003
答案:x=87 y=16
(93) 46x+34y=4820
71x-y=5183
答案:x=73 y=43
(94) 47x+98y=5861
55x-y=4565
答案:x=83 y=20
(95) 30x-17y=239
28x+y=1064
答案:x=38 y=53
(96) 55x-12y=4112
79x-y=7268
答案:x=92 y=79
(97) 27x-24y=-450
67x-y=3886
答案:x=58 y=84
(98) 97x+23y=8119
14x+y=966
答案:x=69 y=62
(99) 84x+53y=11275
70x+y=6790
答案:x=97 y=59
(100) 51x-97y=297
19x-y=1520
答案:x=80 y=39

回答2:

\ │ /
.╭⌒╮ — ● —
╭ ⌒╮╭⌒╮. / │ \ .╭⌒╮
.╭⌒╮. ╭ ⌒╮. ╭ ⌒╮.
╭ ⌒╮ ╭⌒╮ ╭⌒╮
Ba○゛
-那些。
------------------------
暖暖旳〔微笑〕。ナ大旳[幸福]。
送给你。

回答3:

关于x的方程x^2+(2a^2+a-根号下2a^2+a+6)x+a=0的两实数根之和互为相反数则a?
根号3x^2-5x-12 - 根号2x^2-11x+15 =x-3
根号下x^2+(y+1)^2=根号10
根号下(3-x)^2+y^2=根号20
已知实数x,y满足关系式1/2(x+y+5)=2√x+1,+ √y-1,求X与Y 的值
X^4*Y^4/X^4+y^4+6X^2*Y^2+4X^3*Y+4XY^3=________________
问题补充:已知x=2/(2+√3-√5),y=2/(2+√3+√5)
x+1-2|x-2||-|x+1|=18问x等于多少?
1、|2x-1|-|x-2|=9
2、|x|+|x+1|-|3-x|=2x+4
3、|2x+3|+|x-1|=|3x+2|
4、x、y同时满足
|y|-y=0
|x-3|+x-3=0
|y-x|+y-x=0
1.方程3(|x|-1)=|x|/5+1的解是什么? 方程|3x-1|=|2x+1|的解是什么? 2.解方程 <1>||3x-5|+4|=8 <2>|4x-3|-2=3x+4 (注:“| |”表示绝对值 2.<2>意思是3x-5的绝对值再加上4,所得结果的绝对值。。。)
1. |2x-1|+|x-2|=|x+1|
2. 求方程|x-3|+|x+2|=5的整数解
x^2-xy-2y=0
y-xy=0
(1)X^2+(Y-3)^2=(X-1)^2+(4-Y)^2
(2)Y=-X^2+2X+3
x^2-2xy+3y^2=9
4x^2-5xy+6y^2=30
小明家离火车站很近,他每天都可以根据车站大楼的钟声起床。车站大楼的钟,每敲响一下延时3 秒,间隔1 秒后再敲第二下。假如从第一下钟声响起,小明就醒了,那么到小明确切判断出已是清晨6 点,前后共经过了几秒钟?

1. 从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同的走法共有 种.
2. 甲、乙、丙3个班各有三好学生3,5,2名,现准备推选两名来自不同班的三好学生去参加校三好学生代表大会,共有 种不同的推选方法.
3. 从甲、乙、丙三名同学中选出两名参加某天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动.有 种不同的选法.
4. 从a、b、c、d这4个字母中,每次取出3个按顺序排成一列,共有 种不同的排法.
5. 若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,则选派的方案有 种.
6. 有a,b,c,d,e共5个火车站,都有往返车,问车站间共需要准备 种火车票.
7. 某年全国足球甲级联赛有14个队参加,每队都要与其余各队在主、客场分别比赛一场,共进行 场比赛.
8. 由数字1、2、3、4、5、6可以组成 个没有重复数字的正整数.
9. 用0到9这10个数字可以组成 个没有重复数字的三位数.
10. (1)有5本不同的书,从中选出3本送给3位同学每人1本,共有 种不同的选法;
(2)有5种不同的书,要买3本送给3名同学每人1本,共有 种不同的选法.
11. 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,那么不同的陈列方式有 种.
12. (1)将18个人排成一排,不同的排法有 少种;
(2)将18个人排成两排,每排9人,不同的排法有 种;
(3)将18个人排成三排,每排6人,不同的排法有 种.
13. 5人站成一排,(1)其中甲、乙两人必须相邻,有 种不同的排法;
(2)其中甲、乙两人不能相邻,有 种不同的排法;
(3)其中甲不站排头、乙不站排尾,有 种不同的排法.
14. 5名学生和1名老师照相,老师不能站排头,也不能站排尾,共有 种不同的站法.
15. 4名学生和3名老师排成一排照相,老师不能排两端,且老师必须要排在一起的不同排法有 种.
16. 停车场有7个停车位,现在有4辆车要停放,若要使3个空位连在一起,则停放的方法有 种.
17. 在7名运动员中选出4名组成接力队参加4×100米比赛,那么甲、乙都不跑中间两棒的安排方法有 种.
18. 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有 种取法;
(2)从口袋内取出3个球,使其中含有1个黑球,有 种取法;
(3)从口袋内取出3个球,使其中不含黑球,有 种取法.
19. 甲,乙,丙,丁4个足球队举行单循环赛:
(1)共需比赛 场;
(2)冠亚军共有 种可能.
20. 按下列条件,从12人中选出5人,有 种不同选法.
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;
21. 某歌舞团有7名演员,其中3名会唱歌,2名会跳舞,2名既会唱歌又会跳舞,现在要从7名演员中选出2人,一人唱歌,一人跳舞,到农村演出,问有 种选法.
22. 从6名男生和4名女生中,选出3名男生和2名女生分别承担A,B,C,D,E五项工作,一共有 种不同的分配方法.
一、选择题(本题共10小题,每小题4分,满分40分)
1、下列运算正确的是( )
A. 4 =±2 B.2-3=-6 C.x2•x3=x6 D.(-2x)4=16x4
2、随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2006年海外学习汉语的学生人数已达38 200 000人,用科学记数法表示为( )人(保留3个有效数字)
A.0.382×10 B.3.82×10 C.38.2×10 D.382×10
4、 在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是 ( )
A. B. C. D.
6、 甲、乙、丙三名同学参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的,三位同学身高忽略不计),则三人所放的风筝中 ( )
同学 甲 乙 丙
放出风筝线长 100m I00m 90m
线与地面夹角 40° 45° 60°
A .甲的最高 B .丙的最高 C .乙的最低 D .丙的最低
7、国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市
某中学国家免费提供教科书补助的部分情况.
七 八 九 合计
每人免费补助金额(元) 110 90 50
人数(人) 80 300
免费补助总金额(元) 4000 26200
如果要知道空白处的数据,可设七年级的人数为x,八年级的人数为y,
根据题意列出方程组为( )
A. B .
C. D .
8、 有六个等圆按甲、乙、丙三种形式摆放,使相邻两圆相互外切,且
如图所示的连心线分别构成正六边形,平行四边形和正三角形,将圆心
连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q则( )
14、2007年1月1日起,某市全面推行农村合作医疗,农民每年每人只拿
出10元就可以享受合作医疗,住院费报销办法如下表:
住院费(元) 报销率(%)
不超过3000元的部分 15
3000——4000的部分 25
4000——5000的部分 30
5000——10000的部分 35
10000——20000的部分 40
超过20000的部分 45
某人住院费报销了880元,则住院费为__________元.
1、点B在y轴上,位于原点上方,距离坐标原点4单位长度,则此点的坐标为 ;
6、一个正数x的平方根是2a 3与5 a,则a是_________.
7、若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是_____________.
8、如果25x2=36,那么x的值是______________.
9、已知AD是 ABC的边BC上的中线,AB=15cm,AC=10cm,则 ABD的周长比 ABD的周长大__________.
10、如果三角形的一个外角等于与它相邻的内角的2倍,等于与它不相邻的一个内角的4倍,则此三角形各内角的度数是_______________.
11、已知一个多边形的内角和与外角和共2160°,则这个多边形的边数是___________.
12、将点A先向下平移3个单位,再向右平移2个单位后,则得到点B( 2,5),则点A的坐标为 .
3、在平面直角坐标系中,标出下列个点:
点A在y轴上,位于原点上方,距离原点2个单位长度;
点B在x轴上,位于原点右侧,距离原点1个单位长度;
点C在x轴上,y轴右侧,距离每条两条坐标轴都是2个单位长度;
点D在x轴上,位于原点右侧,距离原点3个单位长度;
点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度。
依次连接这些点,你觉得它像什么图形?(8分)

5、计算正五边形和正十边形的每一个内角度数。(5分)

6、一个多边形的内角和等于1260 ,它是几边形?(5分)

8、按要求解答下列方程(共8分)
(1) x+2y=9 (2) 2x-y=5
3x-2y=-1 3x+4y=2

三、二元一次方程组应用(每题7分,共35分)
1、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量之比(按瓶计算)为2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装个两种各有多少瓶?

2、2台大收割机5台小收割机工作2小时收割小麦3。6公顷,3台大收割机和2抬小收割机5小时收割小麦8公顷,一台大收割机和一台小收割机1小时各收割小麦多少公顷?

3、A市到B市的航线长1200km,一架飞机从A市顺风飞往B市需要2小时30分,从B市逆风飞往A市需要3小时20分,求飞机的平均速度和风速。

4、用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?

二元一次方程组专题专练
专讲一:二元一次方程组
(一)正确理解四个基本概念
1.二元一次方程:
含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程.从定义中可以看出:二元一次方程具备以下四个特征:
(1)是方程;(2)有且只有两个未知数;(3)方程是整式方程,即各项都是整式;(4)各项的次数最高为1,例如:像 中, 不是整式,所以 就不是二元一次方程;像x+1=6,x+y-3z=8,不是含有两个未知数,也不是二元一次方程;像xy+6=1中,虽然含有两个未知数x、y且次数都是1,但未知项xy的次数为2,所以也不是二元一次方程,所以二元一次方程必须同时具备以上四点.
2.二元一次方程组
含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组,它有两个特点:一是方程组中每一个方程都是一次方程;二是整个方程组中含有两个且只含有两个未知数,如 , , 都是二元一次方程组,但 就不是二元一次方程组.
3.二元一次方程的一个解
适合二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.
一般地二元一次方程的解有无数个,例如x+y=2中,由于x、y只是受这个方程的约束,并没有被取某一个特定值而制约,因此,二元一次方程有无数个解.
4.二元一次方程组的解
二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解.
定义中的公共解是指同时使二元一次方程组中的每一个方程左右两边的值都相等,而不是使其中一个或部分左右两边的值相等,由于未知数的值必须同时满足每一个方程,所以,二元一次方程组一般情况下只有唯一的一组解,即构成方程组的两个二元一次方程的公共解.
(二)熟练掌握两种基本方法
1.代入消元法
解方程组的基本思路是“消元”-------把“二元”转化为“一元”,其主要步骤是:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.其主要步骤可以概括成三句话:
(1)求关系式:用一个未知数的值去代替另一个未知数.
注意:求关系式时,应选取系数比较简单的方程进行变形.
(2)代入消元:将求得的关系式代入到另一个方程,消去其中的一个未知数,并求出另一个未知数的值.
注意:代入消元时,一定将求得的关系式代入另一个方程进行消元.
(3)回代得解:将求得的这个未知数的值代入关系式中,求出另一个未知数的值,最后写成方程解的形式.
回代得解时,应将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值,并写成方程解的形式,最后还要下结论.
2.加减消元法
通过两式相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.其主要步骤也可以概括成三句话:
(1)变换系数:将某一未知数的系数变成相等或互为相反数.
注意:变换系数时,要选取系数较为简单的未知数作为消元对象,不要漏乘方程中的某一项,特别是常数项!
(2)加减消元:就是将变形后的方程与另一个方程相加或相减,消去一个未知数.
注意:加减消元时,要将方程组中相同未知数上下对齐,以便观察是用加法还是用减法消元,并注意计算中容易错的地方,特别是符号!
(3)回代得解:
注意:回代得解时,可将求出的未知数的值回代到原来方程组中任意一个方程,从而求出另一个未知数的值,最后要写成解的形式!
总之,代入法和加减法都是解二元一次方程组最基本最常见的方法,在解方程组时,如果题目无具体要求,可选用任何一种方法,至于选择哪种方法,一定要先对系数进行认真观察分析,根据系数的具体特点,选择较为简便的方法.
(三)密切关注两种基本思想
1.消元思想:同学们在学会了代入法和加减法解二元一次方程组,首先要搞清解方程组的基本思想就是:“消元”,它的基本模式就是:二元一次方程组 一元一次方程,它的基本方法就是:代入法和加减法.通过代入或加减达到将
“二元”转化为“一元”的目的.
2.转化思想:解二元一次方程组的实质是通过消元将二元转化为一元,在这种“消元”中,渗透了化“未知”为“已知”的重要的转化思想方法.列二元一次方程组解决实际问题的实质是将实际问题转化为数学问题.
转化是一种重要的思想方法,在解题中主要体会这种思想方法的灵活应用.
(三)题型类析

专练一:
1.(06德州)已知方程组 的解为 ,则 的值为_____________.
2.(06南昌) 一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°∠2=y°,则可得到方程组为( )

A B C D
3.

专讲二:二元一次方程组的应用
(一)二元一次方程组的应用问题
1.列二元一次方程组的应用题的一般步骤
(1)审:弄清题意和题目中的数量关系;
(2)设:用字母表示题目中的一个未知数;
(3)找:找出能够表示应用题全部含义的一个相等关系;
(4)列:根据这个相等关系列出重要的代数式,从而列出方程;
(5)解:解这个所列出的方程;
(6)验:检验根是否符合实际情况;
(7)答:写出答案.
可以简记为:“审、设、找、列、解、验、答”七个字,请同学们要牢记.
2.注意实际问题中的基本数量关系及关键词
常用的数量关系有:(1)距离=速度×时间;(2)工作量=工作效率×工作时间;(3)商品的销售额=商品销售价×商品销售量;(4)商品的总销售利润=(销售价-成本价)×销售量;(5)商品售价=标价×折数(6)商品的利润率= ×100℅等等.
还要正确理解一些关键词表达的同类量之间的特殊的等量关系,如:“提前”、“超过”、“早到”、“迟到”、“几倍”、“增加了”、“相向而行”、“同向而行”等等.
3.列二元一次方程组的应用题常用策略
(1)“直接”与“间接转换:当直接设未知数不便时,转而设间接未知数来求解,反之亦然.
(2)“一元”与“多元”转换:当设一个未知数有困难时,可考虑设多个未知数求解,反之亦然.
(3)“部分”与“整体”转换:当整体设元有困难时,就考虑设其部分,反之亦然,如:数字问题.
(4)“一般”与“特殊”转换:当从一般情形入手困难时,就着眼于特殊情况,反之亦然.
(5)“文字”与“图表”转换:有的应用题,用文字语言表达较难,就可以用表格或图形来分析,这样既直观,也易理解题意.

1) 66x+17y=3967
25x+y=1200
答案:x=48 y=47
(2) 18x+23y=2303
74x-y=1998
答案:x=27 y=79
(3) 44x+90y=7796
44x+y=3476
答案:x=79 y=48
(4) 76x-66y=4082
30x-y=2940
答案:x=98 y=51
(5) 67x+54y=8546
71x-y=5680
答案:x=80 y=59
(6) 42x-95y=-1410
21x-y=1575
答案:x=75 y=48
(7) 47x-40y=853
34x-y=2006
答案:x=59 y=48
(8) 19x-32y=-1786
75x+y=4950
答案:x=66 y=95
(9) 97x+24y=7202
58x-y=2900
答案:x=50 y=98
(10) 42x+85y=6362
63x-y=1638
答案:x=26 y=62
(11) 85x-92y=-2518
27x-y=486
答案:x=18 y=44
(12) 79x+40y=2419
56x-y=1176
答案:x=21 y=19
(13) 80x-87y=2156
22x-y=880
答案:x=40 y=12
(14) 32x+62y=5134
57x+y=2850
答案:x=50 y=57
(15) 83x-49y=82
59x+y=2183
答案:x=37 y=61
(16) 91x+70y=5845
95x-y=4275
答案:x=45 y=25
(17) 29x+44y=5281
88x-y=3608
答案:x=41 y=93
(18) 25x-95y=-4355
40x-y=2000
答案:x=50 y=59
(19) 54x+68y=3284
78x+y=1404
答案:x=18 y=34
(20) 70x+13y=3520
52x+y=2132
答案:x=41 y=50
(21) 48x-54y=-3186
24x+y=1080
答案:x=45 y=99
(22) 36x+77y=7619
47x-y=799
答案:x=17 y=91
(23) 13x-42y=-2717
31x-y=1333
答案:x=43 y=78
(24) 28x+28y=3332
52x-y=4628
答案:x=89 y=30
(25) 62x-98y=-2564
46x-y=2024
答案:x=44 y=54
(26) 79x-76y=-4388
26x-y=832
答案:x=32 y=91
(27) 63x-40y=-821
42x-y=546
答案:x=13 y=41
(28) 69x-96y=-1209
42x+y=3822
答案:x=91 y=78
(29) 85x+67y=7338
11x+y=308
答案:x=28 y=74
(30) 78x+74y=12928
14x+y=1218
答案:x=87 y=83
(31) 39x+42y=5331
59x-y=5841
答案:x=99 y=35
(32) 29x+18y=1916
58x+y=2320
答案:x=40 y=42
(33) 40x+31y=6043
45x-y=3555
答案:x=79 y=93
(34) 47x+50y=8598
45x+y=3780
答案:x=84 y=93
(35) 45x-30y=-1455
29x-y=725
答案:x=25 y=86
(36) 11x-43y=-1361
47x+y=799
答案:x=17 y=36
(37) 33x+59y=3254
94x+y=1034
答案:x=11 y=49
(38) 89x-74y=-2735
68x+y=1020
答案:x=15 y=55
(39) 94x+71y=7517
78x+y=3822
答案:x=49 y=41
(40) 28x-62y=-4934
46x+y=552
答案:x=12 y=85
(41) 75x+43y=8472
17x-y=1394
答案:x=82 y=54
(42) 41x-38y=-1180
29x+y=1450
答案:x=50 y=85
(43) 22x-59y=824
63x+y=4725
答案:x=75 y=14
(44) 95x-56y=-401
90x+y=1530
答案:x=17 y=36
(45) 93x-52y=-852
29x+y=464
答案:x=16 y=45
(46) 93x+12y=8823
54x+y=4914
答案:x=91 y=30
(47) 21x-63y=84
20x+y=1880
答案:x=94 y=30
(48) 48x+93y=9756
38x-y=950
答案:x=25 y=92
(49) 99x-67y=4011
75x-y=5475
答案:x=73 y=48
(50) 83x+64y=9291
90x-y=3690
答案:x=41 y=92

(51) 17x+62y=3216
75x-y=7350
答案:x=98 y=25
(52) 77x+67y=2739
14x-y=364
答案:x=26 y=11
(53) 20x-68y=-4596
14x-y=924
答案:x=66 y=87
(54) 23x+87y=4110
83x-y=5727
答案:x=69 y=29
(55) 22x-38y=804
86x+y=6708
答案:x=78 y=24
(56) 20x-45y=-3520
56x+y=728
答案:x=13 y=84
(57) 46x+37y=7085
61x-y=4636
答案:x=76 y=97
(58) 17x+61y=4088
71x+y=5609
答案:x=79 y=45
(59) 51x-61y=-1907
89x-y=2314
答案:x=26 y=53
(60) 69x-98y=-2404
21x+y=1386
答案:x=66 y=71
(61) 15x-41y=754
74x-y=6956
答案:x=94 y=16
(62) 78x-55y=656
89x+y=5518
答案:x=62 y=76
(63) 29x+21y=1633
31x-y=713
答案:x=23 y=46
(64) 58x-28y=2724
35x+y=3080
答案:x=88 y=85
(65) 28x-63y=-2254
88x-y=2024
答案:x=23 y=46
(66) 43x+50y=7064
85x+y=8330
答案:x=98 y=57
(67) 58x-77y=1170
38x-y=2280
答案:x=60 y=30
(68) 92x+83y=11586
43x+y=3010
答案:x=70 y=62
(69) 99x+82y=6055
52x-y=1716
答案:x=33 y=34
(70) 15x+26y=1729
94x+y=8554
答案:x=91 y=14
(71) 64x+32y=3552
56x-y=2296
答案:x=41 y=29
(72) 94x+66y=10524
84x-y=7812
答案:x=93 y=27
(73) 65x-79y=-5815
89x+y=2314
答案:x=26 y=95
(74) 96x+54y=6216
63x-y=1953
答案:x=31 y=60
(75) 60x-44y=-352
33x-y=1452
答案:x=44 y=68
(76) 79x-45y=510
14x-y=840
答案:x=60 y=94
(77) 29x-35y=-218
59x-y=4897
答案:x=83 y=75
(78) 33x-24y=1905
30x+y=2670
答案:x=89 y=43
(79) 61x+94y=11800
93x+y=5952
答案:x=64 y=84
(80) 61x+90y=5001
48x+y=2448
答案:x=51 y=21
(81) 93x-19y=2
86x-y=1548
答案:x=18 y=88
(82) 19x-96y=-5910
30x-y=2340
答案:x=78 y=77
(83) 80x+74y=8088
96x-y=8640
答案:x=90 y=12
(84) 53x-94y=1946
45x+y=2610
答案:x=58 y=12
(85) 93x+12y=9117
28x-y=2492
答案:x=89 y=70
(86) 66x-71y=-1673
99x-y=7821
答案:x=79 y=97
(87) 43x-52y=-1742
76x+y=1976
答案:x=26 y=55
(88) 70x+35y=8295
40x+y=2920
答案:x=73 y=91
(89) 43x+82y=4757
11x+y=231
答案:x=21 y=47
(90) 12x-19y=236
95x-y=7885
答案:x=83 y=40
(91) 51x+99y=8031
71x-y=2911
答案:x=41 y=60
(92) 37x+74y=4403
69x-y=6003
答案:x=87 y=16
(93) 46x+34y=4820
71x-y=5183
答案:x=73 y=43
(94) 47x+98y=5861
55x-y=4565
答案:x=83 y=20
(95) 30x-17y=239
28x+y=1064
答案:x=38 y=53
(96) 55x-12y=4112
79x-y=7268
答案:x=92 y=79
(97) 27x-24y=-450
67x-y=3886
答案:x=58 y=84
(98) 97x+23y=8119
14x+y=966
答案:x=69 y=62
(99) 84x+53y=11275
70x+y=6790
答案:x=97 y=59
(100) 51x-97y=297
19x-y=1520
答案:x=80 y=39
不等式(组)与方程(组)的互化
方程表示的是相等关系,不等式表示不等关系,但在解题时,两者可以互相转化。我们可以通过下面的例题看到两者之间的关系与转化。
一.方程转化为不等式
例1.已知关于x的方程 的解适合不等式 ,求a的取值范围。
分析:解方程 得: ,由题意有不等式: ,解得:
二.不等式组转化为不等式
例2.如果关于x的不等式组 的解集是 ,求m的取值范围。
分析:解不等式①得: ,解不等式②得: ,由题意得不等式:
,解得: 。
注意:不要漏了等号。
三.不等式组转化为方程组
例3.若不等式组 的解集为 ,求 的值。
分析:不等式组 可化为 ,又知其解集为
,所以 ,解得
所以 =-6
四.方程组转化为不等式组
例4. 为何值时,方程组 的解满足 ?
分析:解所给方程组得: ,由已知条件得方程组:
,解得: 。

回答4:

经典证明题:A,B,C,D的4方的和大于等于A,B,C,D积的4倍