分析:将所求关系式转化为tanαtan2α+1,再将tanα=3代入计算即可.解答:解:∵tanα=3,∴sinα•cosα=sinα•cosαsin2α+cos2α=tanαtan2α+1=39+1=310.
tan2α=2tanα/(1-(tanα)^2) =6/(1-9) =-3/4sinαcosα=(1/2)sin2α=(1/2)(3/5) or -(1/2)(3/5)=3/10 or -3/10