若tanα=3,则sinαcosα的值为多少

2024-12-17 02:52:30
推荐回答(2个)
回答1:

分析:将所求关系式转化为tanαtan2α+1,再将tanα=3代入计算即可.解答:解:∵tanα=3,
∴sinα•cosα=sinα•cosαsin2α+cos2α=tanαtan2α+1=39+1=310.

回答2:

tan2α=2tanα/(1-(tanα)^2)
=6/(1-9)
=-3/4
sinαcosα
=(1/2)sin2α
=(1/2)(3/5) or -(1/2)(3/5)
=3/10 or -3/10