看图像,第一类一般是在某点出现断层,或者空点,比如连续的函数上有个地反没有值,或者某一地方出现两个值。
第二类一定要出现不确定,就是图像跑到无穷去了,不论那一侧只要出现无穷就是二类,还有一种情况就是震荡,就是在某一点函数值是介于某值之间不知道是多少。
简单的说,一类间断函数的值是可以在极限下确定的,可以是一个,也可以是2个,
二类的是不可以在极限下确定函数值的。
第一类间断点:
设Xo是函数f(x)的间断点,那么如果f(x-)与f(x+)都存在,则称Xo为f(x)的 第一类间断点。
又如果(i),f(x-)=f(x+)≠f(x),或f(x)无意义,则称Xo为f(x)的 可去间断点。(ii),f(x-)≠f(x+),则称Xo为f(x)的
跳跃间断点。
第二类间断点:
函数的左右极限至少有一个不存在。a若函数在x=Xo处的左极限或右极限至少有一个为无穷大,则称x=Xo为f(x)的无穷间断点。例y=tanx,x=π/2。
b若函数在x=Xo处的左右极限都不存在且非无穷大,则称x=Xo为f(x)的振荡间断点。
例:y=
sin(1/x),x=0。
扩展资料:
间断点的几种常见类型。
可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。
跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。
无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。
振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。
可去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点。其它间断点称为第二类间断点。
由上述对各种间断点的描述可知,函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在,这也是第一类间断点和第二类间断点的本质上的区别。
参考资料来源:百度百科--间断点
参考资料来源:百度百科--第二类间断点
第一类间断点
设Xo是函数f(x)的间断点,那么
如果f(x-)与f(x+)都存在,则称Xo为f(x)的第一类间断点。又如果
(i),f(x-)=f(x+)≠f(x),或f(x)无意义,则称Xo为f(x)的可去间断点。
(ii),f(x-)≠f(x+),则称Xo为f(x)的跳跃间断点。
第二类间断点:函数的左右极限至少有一个不存在。
a.若函数在x=Xo处的左极限或右极限有一个为无穷大,则称x=Xo为f(x)的无穷间断点。例y=tanx,x=π/2
b若函数在x=Xo处·的左右极限都不存在且非无穷大,则称x=Xo为f(x)的震荡间断点。例y=sin(1/x),x=0
再好好看看定义,函数在某点的左右极限都存在,则该点为第一类间断点,特别的,若左右极限相等则为可去间断点,若左右极限不等则为跳跃间断点。在这里,函数在0处的右极限不存在,应该归为第二类间断点,而且还是无穷间断点。
这个区别很简单的啊,关键在于判断极限是否存在,如果想熟练那就多做这方面的题,如果考研,好像这没有考过吧啊