1⼀1986×1987+1⼀1987×1988+1⼀1988×1989+1⼀1989×1990=? 用简便方法计算

2024-12-20 16:01:41
推荐回答(5个)
回答1:

公式:1/n(n+1)=1/n-1/(n+1)
所以
1/1986×1987+1/1987×1988+1/1988×1989+1/1989×1990=
1/1986-1/1987+1/1987-1/1988+1/1988-1/1989+1/1989-1/1990=1/1986-1/1990
=4/3952140

回答2:

原式为1+1+1+1-1/1986-1/1987-1/1988-1/1989
到这里就是靠考算工了……

回答3:

1/1986×(1986+1)+1/1987×(1987+1)+1/1988×(1988+1)+1/1989×(1989+1)=4+1/1986+1/1987+1/1988+1/1989

1楼的答案明显错误,因为答案至少大于4。

回答4:

每项接近1. 之和大约 = 4

无简便方法可算.

回答5:

1/1986×1987+1/1987×1988+1/1988×1989+1/1989×1990
=1/1986-1/1987+1/1987-1/1988+1/1988-1/1989+1/1989-1/1990
=1/1986-1/1990
=4/1986*1990
=1/988035